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PREFACE

This report represents the completion of one phase

of the study of sub-optimal control methods, a study spon-

sored by the National Aeronautics and Space Administration

under Grant NsG-490 on research in and application of modern

automatic control theory to nuclear rocket dynamics and con-

trol. The report is intended to be a self-contained unit

and therefore repeats some of the work presented in previous

status reports.

Portions of the work were submitted to the Depart-

ment of Electrical Engineering at the University of Arizona

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy; this dissertation research was sup-

ported in part by the National Science Foundation under

Grant GP-2237.
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ABS TRAC T

In this work the Second Method of Liapunov is used

as a basis for developing a method of closed-loop, approxi-

mately time-optimal control of linear systems with bounded

control norm.

As a first step in this development, the Second

Method is combined with the minimum principle to create a

new approach to the optimization problem. The approach

centers on the solution of a first-order partial differen-

tial equation, the Hamilton-Jacobi equation. Although it is

not possible to solve this equation in general, a special

class of solutions is sho_n to exist. These solutions,

called eigenvector scalar products, form the basis of an

effective closed-loop, sub-optimal control method.

The eigenvector scalar product solutions are used

first for the control of systems in which the control matrix

is non-singular. The method is based on the concept of

finding a control vector of unit magnitude such that the

value of each of the eigenvector scalar product solutions is

equal. This control vector transfers the system to the

origin in a finite time. in the absence of disturbances,

the control vector, once obtained, remains constant until

the system reaches the origin. In designing a closed-loop

control system using this method, it is necessary that the

vii
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controller-computer solve only algebraic equations, thus

allowing continuous control.

By the use of the eigenvector scalar products, it is

possible to find in an unusually simple manner surfaces

which bound the optimal isochrones. These bounds on the

optimal isochrones enable one to Judge the quality of a sub-

optimal control system. The inability to find such bounds

on the optimal isochrones has been a serious difficulty in

designing sub-optimal systems in the past.

When the control matrix is allowed to be singular,

it is no longer possible to develop a single method to

handle all problems. Hence, two methods are developed, each

of which has restrictions. The first method, called the

Bang-Coast Method, is based on the concept of equating only

r of the eigenvector scalar product solutions rather than

all n. The second method, called the Switched Control

Method, is based on the concept of driving the system to the

r-dimensional subset of the state space in which all n

eigenvector scalar product solutions can be equated. These

two methods can be combined to further increase their range

of applicability. In this manner, effective sub-optimal

control of systems with singular control matrices can be

obtained.

A procedure is outlined for applying these sub-

optimal methods to some practical control problems and is

!
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illustrated by application to two simple nuclear rocket

control problems.

In summary, there are three major contributions of

this work. First, a special class of solutions of the

Hamilton-Jacobi equation, called eigenvector scalar prod-

ucts, is shown to exist. Second, by the use of the eigen-

vector scalar product solutions, a method of Judging the

quality of a sub-optimal system by bounding the optimal

isochrones is developed. Third, the eigenvector scalar

product solutions are used to develop several methods of

closed-loop, sub-optimal control. The procedure to be

followed in each method is systematically presented, and in

each case, the method is shown to represent an effective

compromise between system complexity and speed of response.
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CHAPTER i

INTRODUCTION AND ORGANIZATION

1.1 Introduction

The problem of controlling a system such that its

performance approximates in some sense a desired performance

has been of importance for a long time. A natural outgrowth

of this interest is the optimal control problem: controlling

a system in such a manner that its performance is the best

possible.

Within the last few years, several rather elegant,

general methods of solving the optimal control problem have

been presented. Notable among these is the maximum princi-

ple of Pontryagin. In general, these methods involve

unwieldly computations for all but trivial problems. Also

in many cases, the control once obtained is of open-loop

nature; that is, it is valid for only one initial condition

and no disturbances.

The difficulties associated with these methods have

led to a growing gap between theoretical and practical con-

trol work. To fill this gap, there has been an ever-

increasing development of special techniques for special

problems which generally lead to sub-optimal control, con-

trol which is acceptably close to the true optimal but

practicable.

1
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2

In this work the Second Method of Liapunov is used

as a basis for developing such a method for closed-loop

optimal control of linear systems with a bounded control

norm. This method centers on the solution of a partial dif-

ferential equation which is equivalent to the Hamilton-

Jacobi equation. A special class of solutions, called

eigenvector scalar products, is shown to exist. These solu-

tions are combined to form a sub-optimal control method

which provides a practical compromise between system com-

plexity and speed of response for a large, although limited,

class of systems.

1.2 pr_anization of the Work

This work consists of three basic parts. The first

part comprising Chapters 1, 2, and 3 is introductory in

nature. Following the introductory material in this chap-

ter, the basic optimization problem to be considered is

formulated in Chapter 2. Chapter 2 also contains a brief

review of a modified form of the maximum principle which has

been termed the minimum principle. In Chapter 3 a brief

introduction to the Second Method of Liapunov is presented

in order to make the work a self-contained unit.

Chapters 4 and 5 form the second part, the theoreti-

cal heart of this work. In Chapter 4, the Second Method is

combined with the minimum principle to develop another

approach to the basic optimization problem. It is

!
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demonstrated that solving the basic optimization problem is

equivalent to solving a first-order partial differential

equation which is identical to the Hamilton-Jacobi equation.

Although no general method of solving this equation is

known, a special class of solutions is shown to exist. This

class of solutions, called eigenvector scalar products, is

developed and discussed in detail in Chapter 5.

The third part, consisting of Chapters 6, 7, and 8,

is the practical portion of the work. In Chapter 6, the

eigenvector scalar product solutions are combined to form an

effective sub-optimal control method for systems in which

the control matrix is non-singular. In this form, the sub-

optimal control method provides an effective solution to a

limited class of practical systems.

In Chapter 7, this method is extended to the case

where the control matrix is singular. Although it is not

possible to solve all problems in this class, a solution is

obtained for a large number of practical systems. In

Chapter 8, a procedure is outlined for applying the sub-

optimal control methods developed in Chapters 6 and 7 to

some practical control problems. In particular, attention

is directed toward nuclear rocket control.

Chapter 9 contains a discussion of the concepts

introduced and several ideas for further research. Examples

are presented throughout the work whenever they can serve to

better illustrate a point.

!
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A basic knowledge of vector and matrix algebra is

expected of the reader, as well as an understanding of the

state variable method of formulating control problems.

Although a brief review of the minimum principle and the

Second Method are presented, the reader who is not familiar

with these methods may wlsh to consult some of the suggested

references for a more introductory presentation.



CHAPTER2

THE MINIMUM PRINCIPLE

2.1 Introduction

This chapter consists of two basic parts. First,

the basic optimization problem of this work is formulated,

including all necessary definitions and notation. Second, a

brief description of the minimum principle method for

solving this problem is presented. Since extensive accounts

of this method may be found in the literature (Kalman 1961,

Pontryagin e__%ta_!l. 1962), only the aspects pertinent to the

particular problem of this work are included. Those famil-

iar with the minimum principle may wish to skip Section 2.4.

2.2 Notation

In this section, the notation which is used through-

out is explained. In general, the state space approach is

employed, utilizing vector-matrix formulation. Vectors are

indicated by lower case Roman letters such as x, u. Lower

case Roman letters are also used to designate scalars when

there is no chance of confusion, such as in subscripts. The

components of a vector are indicated by subscripted lower

case Roman letters; therefore x = (Xl,X2,...,Xn). Particu-

lar vectors are indicated by superscripts; therefore

x I = (x ,x ,.-.,x n .

5
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Matrices are designated by underlined upper case

Roman letters such as A, _; scalars are designated by upper

case Roman letters or Greek letters. The transpose of a

matrix or vector is designated by a prime; therefore x' is

the transpose of the vector x.

The notation BL(x)/_x is used to indicate a vector

whose components consist of the partial derivatives of L(x);

thus BL(x)/Bx = (_L(x)/_Xl,.--,BL(x)/_Xn). The notation

VL(x) is also used when the differentiation is with respect

to x; thus, VL(x) = BL(x)/_x.

2.3 Formulation o_!fth___eeBasic Optimization Problem

The state of the control system is described at any

instant of time by n real numbers, Xl,X2,..-,x n. The behav-

ior (or motion) of the system as a function of time may then

be described by n real functions of time, Xl(t),x2(t),-.. ,

Xn(t). These variables, called state variables, are the

components of the state vector x(t) = (xl(t),x2(t),...,Xn(t)).

The motion of the system is controlled by a set of

r real valued control variables, Ul(t),u2(t),...,Ur(t) ,

which are the components of the control vector, u(t). The

set of all possible values of u is called the control region,

U, a subset of an r-dimenslonal Euclidean space. In most

practical applications, U is closed and bounded.

For the present work U consists of the set of all u

such that ll_Du112mo_ where _ is a non-singular matrix and _ is
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a real constant. However, by a simple change of variables

w = _-l_Du, ll_Duli2mO_ becomes ilwli2_l. Hence there is no loss

of generality in considering D to be the identity matrix and

to be unity. Thus U is the set of all u such that llul12_1.

If u(t)EU and is, in addition, piecewise continuous, then

u(t) is called an admissible control.

In practical terms this constraint on the control

norm implies that the total control effort is limited, as

for example if all of the control effort were obtained from

a limited power source. This constraint should be con-

trasted with a constraint on the magnitude of each control

variable, i.e. lUli<l, i = 1,2,-.-,n. In this latter case

the amount of control which may be exerted on the system at

any input point is limited. Although both cases are of

practical importance, only the case of limited control ef-

fort is considered in this work.

The only systems to be considered here are ones for

which the laws of motion may be written as a set of n first-

order linear equations.

n r

xi = j__laijxj + Z b (2.1)- k=l ikuk i = 1,2,''',n

They may also be written in vector-matrix notation.

= _Az+ (2.2)

It is assumed that corresponding to every admissible

control u(t) and every initial condition x ° = X(to) , that
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the motion of the system is defined uniquely by the solution

of Equation (2.2). This solution is called the solution (or

motion) of the system corresponding to the control u(t) for

the initial condition x °.

An admissible control is said to transfer the system

from x° to x I if the solution corresponding to that control

and the initial condition x° is defined for to _ t _ t I and

reaches x I at the time t1.

Since, in general, there may be mar_v admissible con-

trols which transfer the system from x ° to x 1, the question

which naturally arises is, "Which admissible control, in

addition to transferring the system from x ° to x 1, minimizes

_t
j = _1L(x(t))dt (2.3)

to

some cost functional

where L(x) is a real and positive-valued scalar function of

the state vector?"

It should be noted that for fixed points, the tran-

sition time, tI - to, is not fixed but is dependent on the

particular control used. One example of particular impor-

tance is the case when L(x) = 1 and the cost functional, J,

reduces to tI - to, the transition time. This is the

familiar time-optimal problem with a constraint on the con-

trol norm which is treated in detail in later chapters.

!
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A control which transfers the system from x o to x 1

while minimizing the cost functional is called an optimal

control corresponding to a transition from x ° to x 1. For

convenience, x I is considered to be the origin for the rest

of this work.

The optimal control may be found in two different

forms. First, the control variables may be obtained as

functions of time during the transition interval t I - to for

a given initial condition x °. This is called open-loop

control, since no information concerning the system state

is needed or used during the transition interval.

Second, the control variables may be determined as

explicit functions of the system state, i.e., u = u(x).

This is called closed-loop control, since knowledge of the

system state is used during the transition interval. The

advantages of closed-loop control are well established in

the literature (Horowitz 1963, Truxal 1955), and therefore

only three points are mentioned here. First, feedback or

closed-loop operation reduces the effect of system parameter

variations. Second, feedback operation minimizes the effect

of external disturbances. Third, in many practical cases,

the equations of motion are kno_m only approximately. By

the use of closed-loop control, variations in the system's

motion due to these inaccuracies can be minimized. Thus it

appears obvious that not only should one seek optimal

!
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control, but, in general, one should seek closed-loop

optimal control.

The fundamental problem may then be stated in the

following form. Given a linear system whose laws of motion

are described by Equation (2.2), it is desired to find an

optimal, closed-loop, admissible control corresponding to a

transition from x° to the origin with a cost functional of

the form of Equation (2.3). Additional assumptions concern-

ing the system and the cost functional are made in later

chapters.

The next section presents the basic formulation and

theorems of the minimum principle, a method for obtaining an

open-loop solution of the above problem.

2.4 Minimt_m Prlncip_e

The concept of the minimum principle was first intro-

duced by Kalman (1961) as a minor modification of the maxi-

mum principle developed by Pontryagin and his students

(Boltyanskii, Gamkreliche, and Pontryagin 1960). The essen-

tial differences between the two approaches are noted later.

The minimum principle is a logical extension of the classi-

cal calculus of variations and provides a broad and unifying

approach to a wide variety of variational and optimal con-

trol problems. Only those aspects of the theory which are

pertinent to the problem of the preceding section are

presented here.

!
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As the first step in the minimum principle approach,

a new set of n variables, Pi' are adjoined to the state

variables, xi, of the system. These new variables, called

adJoint variables, are defined by the following set of

differential equations, the adJoint equation.

i = -_i[P'X + L(x)] (2.4)
i = 1,2,''',n

Next a scalar function H analogous to the Hamiltonian is

defined by

H(x,p,u) = p,_ + L(x) (2.5)

For convenience, H is referred to simply as the _miltonian.

It can be readily verified that Equations (2.2) and (2.4)

can be rewritten in terms of H(x,p,u) in the following

system of equations which are analogous to the Hamiltonian

canonic equations.

xi = _i (H(x,p,u))

Pi - _xi(H(x,p,u)) (2.6)
i = 1,2,''',n

For fixed values of x and p, H becomes a function of

the control vector u. The greatest lower bound of this

function with respect to admissible controls ucU will be

denoted by H°; therefore

inf
H°(x,P) = u_ H(x,p,u) (2.7)

!
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If the continuous function H actually assumes its lower

bound on U, then H° will be the minimum of H on U. This is

true for all problems in this work; hence

HO(x,p) = min H(x,p,u) (2.8)
u_U

The following theorem presents a necessary condition

for the optimality of a control u.

Theorem 2.1 Let u°(t), to _ t _ tl, be an admissi-

ble control such that the corresponding motion x(t)

which begins at the point x ° at time to reaches the

origin at time t1. In order that u°(t) and x(t) be

optimal, it is necessary that there exist a nonzero

continuous vector function p(t) corresponding to

u°(t) and x(t) such that:

l) for every t, to _ t _ tl, the function H(x,p,u)

of the variable u_U attains its minimum at the

point u = u°(t):

H(x,p,u) = H°(x,p)

2) for every t, to m t _ tl, the function H°(x,p)

is identically zero:

H°(x(t),p(t)) = 0

This theorem formulated in terms of the minimum

principle is equivalent to a theorem of the maximum princi-

ple initially proven by Pontryagin (1962). In the maximum

principle formulation, the sign preceding L(x) in both

Equations _.4) and (2.5) is negative. Because of _._*_

!
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change, it is necessary to consider the least upper bound of

H(x,p,u), rather than the greatest lower bound. Hence H is

maximized rather than minimized. Although the use of the

maximum principle is more common in the literature, the use

of the minimum principle is more convenient for the develop-

ment of Chapter 4, and thus it is employed here.

For the problem presented in the preceding section,

the F_miltonian is given by

H(x,p,u) = p'(_Ax + Bu) + L(x)

= p'_Ax + p'Bu + L(x) (2.9)

The adjoint equation may then be developed by use of

Equation (2.6).

: -A,p - VL(x) (2.10)

The next step is the minimization of H(p,x,u) with

respect to uEU. Since the middle term on the right side of

Equation (2.9) is the scalar product of two vectors, p'B

and u, H(x,p,u) is minimized by making the direction of u

opposite to _'p and making the magnitude of u as large as

possible. However, the norm of u is required to be less

than or equal unity in order for u to be an admissible con-

trol. Hence, u is selected to be a vector with unit norm

(length) and direction opposite _'p:

u ° = _'P

ll_°pLI
(2.11)

!
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Substituting u as given by Equation (2.11) into the Equa-

tions (2.2) and (2.9), the following set of coupled first-

order ordinary differential equations are obtained.

= _Ax + B--3B'P (2.12)
II_ ° pll

= -A'p - VL(x) (2.13)

with the boundary conditions x(t o) = x ° and x(t 1) = 0 and

the auxiliary condition H°(x,p) = 0.

The difficulties inherent in the minimum principle

approach are now obvious. First, the simultaneous solution

of Equations (2.12) and (2.13) is not elementary, since both

equations are in general nonlinear. Since the adJoint equa-

tion has no boundary conditions, while the system equations

have 2n boundary conditions, the so-called "two-point"

boundary value problem is created and numerical solution is

normally necessary. Second, the control as determined by

the minimum principle is open-loop control, i.e., u = u(t)

not u(x).

Another method for attackin_ the basic optimization

problem of the preceding section is presented in Chapter 4.

The method is based on both the Second liethod of Liapunov

and the minimum principle and attempts to remove or allevi-

ate the difficulties mentioned above. In particular, the

control vector is found as a function of the state variables,

i.e._ closed-loop control. However, before proceeding to

!
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that development, it is necessary to present some of the

basic definitions and theorems of the Second Method.
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CHAPTER 3

THE SECOND METHOD OF LIAPUNOV

3.1 Introduction

The Second Method of Liapunov provides the most gen-

eral approach to the stability of dynamic systems whose laws

of motion are described by ordinary linear or nonlinear

differential equations. This chapter presents a brief

review of the basic concepts and definitions of the Second

Method. Only those portions of the theory which are

directly applicable to the problem at hand are discussed.

The reader is directed to the literature for a more complete

presentation (Hahn 1963, LaSalle 1960, LaSalle and Lefschetz

1961, Schultz 1962).

In this chapter, the dynamic systems under consider-

ation are assumed to be autonomous and describable in state

variable form as n first-order differential equations of the

form

xi = fi (x) (3.1)
i = 1,2,...,n

In matrix notation, this may be written as

= f(x) (3.2)

Such a system is called autonomous. It is obvious that for

16
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closed-loop control the system of Equation (2.2) is of this

form since it becomes

= _Ax+ _Bu(x)

= f(x)

The equilibrium state being investigated is assumed

to be located at the origin. This is actually no restric-

tion, since any equilibrium point may always be translated

by simple linear change of variables to the origin. Again

the system discussed in Chapter 2 satisfies this assumption,

since the control is always chosen such as to drive the

system to the origin.

This chapter consists of three parts. First, the

definitions of definiteness and stability are presented.

Second, a modified Liapunov stability theorem is stated

without proof. Third, this stability theorem is given a

geometric interpretation.

3.2 Definitions

The concepts of definiteness play an important role

in the stability theorems. The following definitions,

which follow Malkin (1958), are of interest here.

Definition B.1 Positive INe_ativel Definite

A scalar function, V(x), is positive (negative)

definite if for llxil_G V(x)_O ((0) for all x _ 0

and V(0) = 0.
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Definition 3.2 positive INegative)Semidefinite

A scalar function, V(x) is positive (negative) semi-

definite if for Ilxll_ _ V(x) _ 0 (_0) for all x _ 0

I
I

I

and V(0) = 0.

Definition 3.3 indefinite

A scalar function, V(x), is indefinite if no matter

how small _ is chosen, V(x) may assume both positive

and negative values for llxll_ _.

I

I
I

If in the above definitions _may be made arbitrarily large,

the definitions hold in the whole space. This is the case

with all of the scalar functions to be discussed in the

following chapters.

A few examples serve to clarify these definitions.

I

I

The function

v(x) = (xl)2 + (x2)_

is positive definite if the system is second-order, but is

I

I

only semidefinite if the system is of higher order, since

for x I = x 2 = O, V(x) is zero independent of x 3, x4,'''.

the other hand the function

On

I V(x) = (xI + x2)

is semidefinite even for second-order systems, since if

x I = -x2, V(x) is zero even though x is not equal to zero.

The function

I V(x) = x I + x 2
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is obviously indefinite independent of the order of

the system.

One class of scalar functions of particular impor-

I

I

tance is a quadratic form. In this case V(x) may be written

in the form

V(x) = x'C_x

I

I

where _ is a constant square matrix. Usually if V(x) is a

quadratic form, the definiteness of V(x) is attributed to _.

Hence one speaks of a positive definite matrix.

I
Closely related to the concept of definiteness is

the concept of a simple closed surface (or curve). A sur-

I
I

I

face is said to be simple if it does not intersect itself

and closed if it intersects all paths that lead from the

origin to infinity. The reader is reminded that it is

assumed that the equilibrium state is at the origin. Hence

a simple closed surface is topologically equivalent to the

I
I

I

surface of an n-dimensional sphere. Letov (1961) has shown

that if a scalar function, V(x), is positive definite and,

in addition, is radially unbounded, i.e., V(x)--Ooas

Ux11-_o6, then the set of all points x such that V(x) = K, a

positive constant, is a simple closed surface. In addition,

I the surface V(x) = K 1 lies entirely inside the surface

V(x) = K 2 whenever KI<K 2.

I There are types of stability that have beenmany

defined for systems that may be described by Equation (3.2).

I

I
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In the case of linear systems, almost all of these defini-

tions are equivalent. For nonlinear systems, this is not

true. However, for this work, only stability in the sense

of Liapunov and asymptotic stability are of interest. Hence

only these types of stability are defined. Let S(_) be the

spherical region of radius _0 around the origin, i.e., S(_)

consists of all points x such that llxllW_.

Definition $.4 Stable in the Sense of Liaounov

The origin is stable in the sense of Liapunov, or

simply stable, if corresponding to every number

_0 there exists a number 8(£)_0 such that solutions

starting in S(8) will remain in S(E) ever after.

Definitlon3___ As_mototically Stable

If the origin is stable and, in addition, every

solution starting in S(8) not only stays in S(C) but

tends toward the origin as time increases indefinite-

ly, then the origin is asymptotically stable.

Definition _.6 Unstable

The origin is unstable if for some £_0 and any 8_0,

no matter how small, there is always a point x in

S(8) such that a solution starting from that point

leaves S(E).

A graphical representation of these definitions is shown in

Figure 3.1 for a two-dimensional case.

The definitions emphasize the local character of

stability for nonlinear systems, since the region S(8) may
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Figure 3.1 Graphical Representation

of Stability Definitions
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be arbitrarily small. If the re_ion S(B) includes the en-

tire space, the definitions are called global. In the

chapters which follow, the main interest is in global asymp-

totic stability, since the systems are linear.

3.3 Stability Theorem

As was the case _ith definitions of stability, there

are many stability theorems which constitute the Second

_lethod. Since the major concern of this work is not sta-

bility, only one theorem is presented here. This stability

theorem, due to LaSalle (1960), differs from the original

Liapunov theorem in that V(x) is allowed to be semidefinite,

as long as it is not zero on a solution of the system, other

than the origin. In the original theorem, V(x) was required

to be negative definite.

Before stating this theorem, it is convenient to

define a special class of scalar functions, Liapunov

functions.

Definition _. Liaounov Function

A positive definite scalar function, V(x), with

continuous first p_rtial derivatives, is called a

Liapunov function if its total time derivative,

V(x) is negative semidefinite.

Since V(x) has continuous first partials, the chain rule may

be used to obtain V(x).
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,}(x) - _V(xl d_!l +
_x I dt

n _v(x) •
"X I

i=1 _xi
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BV(x) dx 2 + ... + BV(x) d_xxn

Bx 2 _t Bx n dt

This may be written with the use of the notation VV(x) as

V(x) = VV' (x)x (3.3)

In later chapters, functions which are only positive

semidefinite with negative semidefinite time derivatives are

also called Liapunov functions for simplicity even though

they do no satisfy the strict definition, in terms of the

Liap_nov function, the stability theorem may be stated in

the following form.

Theorem L1 Stability Theorem

If there is a Liapunov function, V(x), such that

V(x)-_Ooas UxU---_ (radially unbounded) and if V(x)

is not identically zero along any solution of

Equation (3.2) other than the origin, then the

system is globally asymptotically stable.

The basic concept of the Second Method is now evi-

dent: by proper selection or generation of a Liapunov

function, it is possible to determine the stability of a non-

linear dynamic system without any knowledge of the solutions

of the system equation. It is perhaps of value to investi-

gate the stability theorem from a geometric viewpoint.
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Since V(x) is positive definite, and radially

unbounded V(x) = E, a constant, becomes a family of concen-

tric closed surfaces surrounding the origin such that the

i surface V(x) = K 1 lies inside V(x) = K 2 whenever KI<_ 2.

Figure 3.2 shows a graphical picture for the two-dimensional

I or second-order case. Since both V(x) and V(x) are implicit

functions of time and V(x) is required to be non-positive,

I the state of the system must be found on successively

"smaller" V(x) = K, a constant, surfaces or must remain

I stationary. But V(x) cannot be zero on any solution except

I x = 0; therefore the state of the system cannot remain sta-

tionary. Hence, the system trajectory must move toward

I the origin.

Three features of the Second Method should be noted.

I First, the method provides only sufficient conditions for

I
I

I

stability; hence if a system does not satisfy the stability

theorem, no conclusion may be drawn relative to system

stability. Second, the converse of the stability theorem

has been proven. Therefore if the system is stable, a

Liapunov function must exist. Third, the Liapunov function

I
I

I

is no___tunique, which is one of the most powerful features of

the Second Method. _o longer is one searching for a single

unique solution to the differential equation but rather for

one out of many Liapunov functions. However, because the

method provides only sufficient conditions, some Liapunov

I functions may provide a better answer than others.

I
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THE SYSTEM

KI< K2< K 3

tl< t 2 <t 3

t 3

V(x)= K I

V(x)= K 2

Figure 3.2 Surfaces of V(x) = Constant

Cx):K 3
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CHAPTER 4

CLOSED-LOOP OPTIMAL CONTROL VIA THE SECOND METHOD

4.1 Introduction

In Chapter 2 the basic optimization problem was pre-

sented. This was followed by one method of obtaining an

open-loop solution of the problem, the minimum principle.

In this chapter another method of attacking the basic opti-

mization problem is presented. This method, based on the

Second Method of Liapunov and the minimum principle, yields

closed-loop control.

In the next section a brief discussion of the back-

ground for the use of the Second Method is presented. This

is followed by an optimality theorem and its proof. It

is demonstrated that solving the basic optimization problem

is equivalent to solving a first-order partial differential

equation which is identical to the Hamilton-Jacobi equation.

Since no general method of solving this equation is known,

the approach presented here has not solved the problem but

has rather formulated the problem into a new framework. In

this framework, a special class of solutions, called eigen-

vector scalar products, is shown to exist in the next chap-

ter. From these solutions, a method is developed for

designing effective closed-loop, sub-optimal control for a

large, although limited, class of systems.

26
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It should be noted that the results of this chapter

are not new, although the method of deriving them is. As is

shown in the last section of this chapter, the results could

have been derived directly from the Hamilton-Jacobi equa-

tion. In effect, a special case of the Hamilton-Jacobi

equation is derived in this chapter. It is felt that carry-

ing out the development in this manner adds greater insight

into the relation between the Second Method and optimal

control.

4.2 Background

The use of the Second Method of Liapunov for the

design of optimal systems has been suggested by several

authors (Johnson 1963, Kalman and Bertram 1960, LaSalle

1962, Letov 1961, and Nahi 1964). Unfortunately, almost all

of these methods have three basic problems: l) they are

approximate, 2) either no estimate of the approximation

error is possible, or the estimate is overly conservative,

and 3) it is necessary to choose a V(x) for which no gen-

eral procedure is presented. Hence these methods were never

widely accepted. (A brief resume of several of these meth-

ods can be found in the Appendix.)

Nahi (1964) has recently presented a procedure for

using the Second Method to obtain time-optimal control.

However, Nahi was only able to find solutions for a rather
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restricted class of systems. It is shown later that Nahi's

method is a special case of the method presented here.

The determination of V from V(x) was discussed in

Chapter 3; the result is repeated here for reference.

= VV'Cx)_ (4.1)

Now substituting Equation (2.2) for _, one obtains

= VV'(x)_Ax+ _V'(x)Bu (_.2)

Thus V becomes a function of both the control and state vec-

tors for a given V(x). In the following discussion the no-

tation V(x,u) is used to indicate this dependence on

both u and x.

In 1960 Kalman and Bertram presented a method for

designing approximately time-optimal control systems. Their

method was based on the knowledge that for a closed, bounded

control region, the control vector is always on the bound-

ary. They suggested minimizing V(x,u) with respect to all

admissible controls based on the argument that this would

make V(x) approach zero most rapidly and hence the system

would reach the origin in minimum time. This method suffers

from all of the disadvantages noted above and therefore has

not been widely employed. However, the concept of minimiz-

ing V(x,u) is valuable and is used below.

Retaining the idea of minimizing V(x,u) for the

moment, consider the implication of setting V(x) = -L(x).

I
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I Since L(x)was required to be at least positive semidefi-
Q

nlte, V(x) is thus of the proper nature. Then V(x) becomes

I equivalent to the cost functional:

tA . t1

I V(x(t I)) - V(x(to)) = _I V(x)dt = _ -L(x)dt
t_ t_

I

(4.3)

Hence surfaces of constant V(x) become surfaces of constant

cost.

The combination of these two concepts suggests the

idea of setting min V(x,u) = -L(x) The question remaining
u£U

is "Does this provide optimal control?" The following

section demonstrates that the answer is affirmative.

Before proceeding with the proof in the next section

it should be pointed out that all of the approaches employ-

ing the Second Method yield closed-loop control• This is a

feature that cannot be over-emphasized.

I

I

I

I

I

4.3 Optimality Theorem

In the preceding section, it was suggested that the

selection of a V-function, V(x), such that min V(x,u) =
u_U

-L(x), would yield optimal control• In this section, a

corresponding optimality theorem is stated and its proof

given•

Before doing this, it is perhaps of value to state

the basic optimization problem again• Given a linear system

whose laws of motion can be described by

x=_Ax +_Bu
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it is desired to find an optimal, closed-loop, admissible

control corresponding to a transition from x ° to the origin

with a cost functional of the form

S tlJ = L(x(t))dt

u0

The control region, U, is the set of all control vectors, u,

such that l]uJl2 _ I.

For fixed values of x, V(x,u) becomes a continuous

function of u. The minimum of this function with respect to

all admissible controls is designated by V°(x).

V°(x) min V(x u) (4.4)
= u£U

Anticipating the results to follow, the corresponding mini-

mizing control is denoted by u °.

Theorem 4.1 If there exists a Liapunov function,

V(x), with continuous second partial derivatives

with respect to x and such that V°(x) = -L(x), then

the control u° which minimizes V(x,u) is an optimal

control.

Before carrying out the proof of this theorem, consider the

following lemma.

Lemma 4.1 If there exists a Liapunov function,

V(x), with continuous second partial derivatives

with respect to x and such that V°(x) = -L(x), then

the gradient of V(x),_TV(x), satisfies the adJoint

Equation (2.4).
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The first step in the proof of the lemma is the

minimization of V(x,u) as given by Equation (4.2) with re-

spect to all admissible controls. The only term involving

u is a scalar product of u and _B'VV(x). Thus by an argument

similar to that presented in Section 2.4, uo is found to be

uo = -B'VV(x) (4.5)
li_B'VVCx)ll

Substituting u° for u in Equation (4.2), one obtains

_o = VV'(x)_Ax - II_B'VV(x)II (4.6)

Setting V°(x) = -L(x) yields

VV'(x)_Ax - iiB'VV(x)il= -L(x) (4.7)

Now taking the partial derivative of both sides of Equation

(4.7) with respect to x gives

V(VV'(x))_Ax + A'VV(x) - V(VV'(x))BB'VV(x), = -_TL(x)
II_B,VV(x)II

Therefore

v(vv, (x))_Ax= -A_V(x) +

But from Equation (4.5)

_(VV' (x))B_.BB_V(x)
i-

ilB'VV(x)II
- VL(x) (4.8)

uo = -B'VV(x)
lIB'VV(x)ll

and hence Equation (4.8) becomes

V(VV'(x))_Ax = -A'VV(x) -V(VV'(x))B_u ° -VL(x) (4.9)
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Now consider the total time derivative of VV(x), again using

the chain rule.

d
_(VVCx)) = (VCW'Cx)))'_

= (VCVV'Cx)))'_Ax + (VCvV'Cx)))'Bu ° (4.10)

By hypothesis V(x) has continuous second partial derivatives

and therefore the matrix V(VV'(x)) is symmetric. Thus

V(VV'(x)) = (_(VV'(x)))'. Then substituting Equation (4.9)

into Equation (4.10), one obtains

_(VVCx)) = -A'VVCx) VL(x) (4.11)

Comparing Equation (4.11) with the adJolnt Equation (2.13),

one notes that VV(x) satisfies the adJoint equation, which

completes the proof of the lemma.

Now returning to the proof of Theorem 4.1, VV(x) is

substituted for p in the Hamiltonian as defined by Equation

(2.9) to obtain

H(x,VV(x),u) =VV'(x)Ax + VV'(x)Bu + L(x)

= _(x,u)+ L(x) (4.12)

Since L(x) is not an explicit function of u,

min H(x,VV(x),u) = min V(x,u) + L(x)
u_U uCU

Or H°(x,VV(x)) = V°(x) + L(x) (4.13)

I
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But by hypothesis, V°(x) = -L(x) and hence
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H°(x,VV(x)) = 0 (4.14)

Therefore conditions one and two of the minimum principle

have been satisfied and u ° must be an optimal control, which

completes the proof of Theorem 4.1. Again it should be

noted that the control given by Equation (4.5) is a closed-

loop control. In the next section, Theorem 4.1 is discussed

further, in particular with respect to the classical

Hamilton-Jacobi equation. The existence of Liapunov func-

tions as required for this theorem is also discussed.

4.4 Hamilton-Jacobi Equation

It was demonstrated, in the previous section, that

the optimal control problem with a constraint on the norm of

the control vector is equivalent to the problem of solving

the first-order partial differential equation

v°(x) = -L(x) (4.15)

It is of interest to note that Equation (4.15) is, in fact,

a special case of the classical Hamilton-Jacobi equation

H°(x,VV(x)) +
_V(x)

_St
- 0 (4.16)

From the transversality conditions, one knows that

H°(x,_V(x)) = 0 at the terminal time, t1. Since

dH°(x_V(x)) = _H°(x_V(x))

dt _t

!
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and H°(x,_V(x)) does not contain t explicitly, H°(x,_(x))

must be constant and identically zero for all t, to _ t _ t1.

Therefore _V(x)/_t is also identically zero and the

Hamilton-Jacobi equation becomes

H°(x,VV(x)) = 0 (4.17)

Thus for the problem of Section 2.3, one obtains

! H°(x_V) = VV'(x)_Ax -IIB'VV(x)II + L(x) = 0

I or H°(x,VV(x)) = V°(x) + L(x) = 0

I
i
l
I

I
i
l
!

Use could have been made of this fact in the devel-

opment of the previous section. However, it was felt that

greater insight into the use of the Second Method was ob-

tained by carrying out the proof in the manner presented.

The knowledge that Equation (4.15) is the Hamilton-Jacobi

equation does make it possible to conclude that the exist-

ence of a solution of Equation (4.15) is sufficient for

optimal control to exist. This is an advantage over the

minimum principle where only necessary conditions for

optimality are given.

Next, one might ask if solutions of sufficient

smoothness, i.e., continuous second partial derivatives,

exist for Equation (4.15). Since the solutions of interest

in the following chapter do, i__so facto, exist, the exist-

ence of solutions is not of prime importance here.
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However, it is perhaps of interest to look briefly at the

problem, even though a complete answer is not known.

First, it can be shown by example that if the con-

trol is scalar and the system is at least second-order, then

there is no solution of sufficient smoothness. In fact,

there is no solution with continuous first partial deriva-

tives. On the other hand, Krassovskii (1959) has shown that

if B is non-singular and L(x) = 1, then a solution to Equa-

tion (4.15) exists with continuous partial derivatives of

all order.

Hence, one is faced with a two-fold problem. First,

a solution may not exist; and second, if one does exist, no

general method of obtaining it is known. Therefore the

basic optimization problem has not been solved. The neces-

sary course of action is to obtain an approximate solution.

In the next chapter, a method of modifying the Hamilton-

Jacobi equation is followed by the presentation of a special

class of solutions. From these solutions, a method is

developed for designing effective sub-optimal control for a

large, although limited, class of systems.

I



CHAPTER 5

EIGENVECTOR SCALAR PRODUCT SOLUTIONS

5.1 Introduction

In this chapter a special class of solutions of the

Hamilton-Jacobi equation for the time-optimal problem is

shown to exist. These solutions, called eigenvector scalar

products, comprise the first of the three major contribu-

tions of this work. The second major contribution, which is

contained in the last section of this chapter, is the devel-

opment of a method for obtaining surfaces which bound the

optimal isochrones from the outside. The next two chapters

form the third major contribution, a method of designing

effective sub-optimal control systems by the use of the

eigenvector scalar product solutions.

The first part of this chapter presents a method of

modifying the Hamilton-Jacobi equation in order to put the

solution into a more convenient form. This is followed by

the presentation of the eigenvector scalar product solutions.

The last section of this chapter discusses the problem of

bounding the optimum cost functional.

5.2 Modification of Hamilton-Jacobi Equation

A method of modifying the Hamilton-Jacobi equation

is presented in this section which provides a more

36
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convenient representation of the solutions to be discussed

in the next section. One approach might be to make a non-

linear transformation of state variables in order to reduce

the Hamilton-Jacobi equation to some elementary form. To

date this approach has not been very useful.

Another approach is to change to another Liapunov

function W(x), given by G(V(x)) where V(x) is the optimum

Liapunov function, i.e. a solution of Equation (4.15). In

order for W(x) to retain the basic nature of a Liapunov

function, it is required that G(V) satisfy the following

conditions:

i) G(v)> 0 if v> 0

2) G(0) = 0

3) dG(v)/dV>0 if V>0

4) lim G(V) = c_
V--_oo

5) d2G(V)/dV 2 exists and is continuous

The effect that this transformation has on the

Hamilton-Jacobi equation can be observed by considering the

total time derivative of W(x). Again W is a function of

both x and u and hence is written W(x,u).

_(x,u) = dG(V) _(x,u) (5.1)
dV

Now minimizing W(x,u) with respect to all admissible

controls, while remembering that V(x) and hence G(V(x)) is

not a function of u, yields

!
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min W(x,u) -dG(V) min V(x,u)
u_U dV u_U

dG(V) _O(x ) (5.2)

dV

The minimum of W(x,u) with respect to u_U is designated by

W°(x). Then Equation (5.2) becomes

_O(x ) _ dG(V) _O(x ) (5.3)
dV

But, by assumption, V(x) is a solution of Equation (4.15)

and hence V°(x) = -L(x). Therefore Equation (5.3) becomes

W°(x) = -L(x) dG(V) (5.4)

| dv
Since dG(V)/dV is positive for V greater than zero,

I G must be monotone increasing on the interval [O,C_). Then

I
I

I

according to conditions 1) and 2) above, G must map the in-

terval _,co) onto the interval _,oo) in a one-to-one

fashion. Therefore G possesses a unique inverse function I

on the interval _,oo). Since both V(x) and W(x) are re-

quired to be positive definite, this is the only region of

I interest. Therefore

I
I

I

V(x) = I(W(x))

Then substituting for V(x) in Equation (5.4) gives

dG(I(W(x)))_°(x) = -L(x)
dV

(5.5)

(5.6)

I

I
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Now letting F(W) = dG(I(W)) Equation (5.6) becomes
dV '

w°(x) = -L(x)F(W(x))
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(5.7)

This equation is called the modified Hamilton-Jacobi equa-

tion. For the case of time optimal control_ L(x) = 1, and

Equation (5.7) reduces to

w°Cx) = -FCWCx)) (5.8)

By combining the results of this section with the

theorem of Section 4.3, the following optimality theorem

results.

Theorem _.1 If there exists a Liapunov function,

W(x), with continuous second partial derivatives,

such that W°(x) = -L(x)F(W(x)) where F(W) =

dG(I(W))/dV and G satisfies the conditions given

u ° which minimizes W(x,u),above, then the control, ,

is an optimal control.

The first step in the proof of this theorem is to obtain the

Liapunov function, V(x), which corresponds to W(x). Substi-

tuting W = G(V) into the definition of F(W) yields

F(G(V)) = dG(I(G(V)))/dV (5.9)

However I is the inverse of G and hence I(G(V)) = V; then

Equation (5.9) becomes

F(G(V)) = dG(V)/dV (5.1o)

I
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By antidifferentiation G(V) can be obtained from Equation

(5.10). By hypothesis this G(V) must satisfy the conditions

given above. Hence V(x) given by I(W) must be a Liapunov

function if W(x) is. Condition 5) on G(V) assures that if

W(x) has continuous second partial derivatives, then V(x)

does also. Thus the first portion of Theorem 4.1 has been

satisfied.

Next consider V(x,u) which may be obtained as

_(x,u) - dV(x) _(x,u) (5 11)
dW

Since neither W(x) nor V(x) are functions of u, the same

control u ° must minimize both V(x,u) and W(x,u) and hence

Equation (5.11) becomes

_O(x) : dV(x) _O(x)
dW

@

By hypothesis W°(x) = -L(x)F(W(x)) and therefore one obtains

V°(x) = -L(x) _V/dW] [dG(V)/dV] (5.12)

But G(V) = W and hence

[dV/dW] [dGCV)/dV] = [dV/dW] [dW/dV]

= 1

Therefore Equation (5.12) becomes

V°(x) = -L(x)
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Hence V(x) satisfies the conditions of the Theorem 4.1 and

u ° must be an optimal control which completes the proof of

the theorem.

For the minimum time problem, this theorem becomes

Theorem 5.2 If there exists a Liapunov function

W(x), with continuous second partial derivatives,

such that W°(x) = F(W(x)), then u ° is a time-

optimal control.

This last theorem embodies the basic concept of the method

presented by Nahi (1964) for obtaining time-optimal control

by the use of the Second Method. However, by the develop-

ment presented here, greater insight and information are

gained with regard to the function F.

Hence by the use of the transformation G, the prob-

lem of finding a solution for the Hamilton-Jacobi equation

has been changed to the problem of finding a solution for

the modified Hamilton-Jacobi equation. By means of such a

transformation, it is hoped that the solution can be

facilitated. This procedure is, in fact, a special case of

the procedure of canonic transformations used in classical

mechanics and partial differential equation theory.

One transformation, G, which is of particular

importance in the next section is

(5.13)
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Then the inverse of G is given by

2 ln(_2_ + 1) (5.14)V = I(W) - El

Therefore Equation (5.7) becomes

_°(x)--LCx)[_lWCX)+K2_] (5.15)

For the time-optimal case, one obtains

W°(x) = -_iW(x) - K2_ (5.16)

This equation plays an important role in the next section.

5.3 Eigenvector Scalar Products

In this section a particular class of solutions of

the Hamilton-Jacobi equation is developed. Because of the

manner in which these solutions are formed, they are called

eigenvector scalar product solutions. For the material to

be presented in the remaining portion of this chapter and in

the next chapter, two additional assumptions are added to

the basic optimization problem as formulated in Section 2.3.

First, only time-optimal control is considered, i.e. L(x) =

1. Second, the eigenvalues of the matrix A in Equation

(2.2) must be real, non-positive, and distinct.

In the preceding section, it was shown that time

optimal control could be obtained by finding a Liapunov

function, W(x), such that W°(x) = -F(W(x)). The following

theorem, due to Malkin (1958), establishes a necessary and

I
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sufficient condition for W(x) = AW(x) for uncontrolled

linear systems.

Theorem _._ For systems whose laws of motion are

of the form x = _Ax there exist Liapunov functions

such that W(x) = AW(x) if and only if _= mlA 1 +

m2A 2 + ... + mn_ n and W(x) is given by

W(x) = (ql'x)ml (q2'x)m2 -.. (qn'x)mn

where the _i's are the eigenvalues of A and qi is

the eigenvector of A' associated with _ and the

mi's are positive integers.

The reader is referred to Malkin (1958) for a proof

of the necessity portion of the above theorem, which is

somewhat involved and not of particular importance for the

present discussion. The proof of the sufficiency of the

above theorem is presented below, since it is useful in the

following work. However, before beginning this proof, con-

sider the following lemma.

Lemma 5.1 If q is an eigenvector of _' and A is the

associated eigenvalue, and if W(x) = q'x, then

_(x) : _W(x)

For W(x) = q'x W(x) is given by

W(x) = q'_ = q'_Ax (5.17)

I



But q is an eigenvector of A' hence
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A'q = kq (5.18)

Or, taking the transpose of both sides of Equation (5.18),

one obtains

q'A = _q' (5.19)

Substituting Equation (5.19) into Equation (5.17) yields

=  q,x :  WCx)

and the proof of the lemma is completed.

Returning to the proof of the theorem, consider a

Liapunov function of the form

W(x) = (ql'x)ml (q2'x)m2 ... (qn'x)mn (5.20)

Now let Wi(x) = qi'x and then Equation (5.20) becomes

W(x) = Wl(X)ml W2(x)m2 ... W (x)mnn

Now taking the total time derivative of W(x), one obtains

W(x) mlWlml-1WIW2m2 "'" Wn mn "'" lml mn-1= + + mnW "''Wn n

(5.21)

But from Lemma 5.1, Wi = _iWi ' then Equation (5.21) becomes

W(x) = _lmlWlmlW2m2 -'. Wn mn + "'" +_nmnW1 ml "'" Wnmn

= (_Iml + _2m2 + ... + _nmn ) W(x)

This completes the proof of the theorem.
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Since W(x) turns out to be a function of W(x), one

is led to consider a Liapunov function of the form of

Equation (5.20) as a possible solution of the modified

Hamilton-Jacobi equation. The following theorem indicates

that there are, in fact, solutions of this form.

Theorem 5.4 If q is an eigenvector of _' and _ Is

the associated elgenvalue, then W(x) = (q'x) 2 is a

solution of the modified Hamilton-Jacobi Equation

(5.16), i.e. W°(x) = -KIW(X) - K2_W-_where

K 1 = -2_and K2 = 211_'q_.

As a first step in the proof, consider the following lemma.

Lemma 5.2 For any matrix _ such that _ = pp' and

any matrix B, P'BB'P = HB'pjI2_.

Writing out P'BB'P in full, one obtains

P'BB'P = pp'BB'pp'

Now consider the p'BB'p portion of this expression. B is an

n by r matrix, while p is an n by 1 column matrix (vector).

Hence the product p'B is an 1 by r matrix, and B'p is an

r by 1 matrix. Therefore the product p'BB'p must be an 1 by

1 matrix, or a scalar, whose value is JlB'pll2. Therefore

P'BB'P = p(il2'pil2)p'

= ii_'pll22 (5.22)

which completes the proof of the lemma. It should be

pointed out that B is not required to be non-slngular.
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The next step, in the proof of the theorem, is to

rewrite W(x) in a new form. Since q'x = x'q, then

W(x) = q'xq'x can be written as

where _ = qq'.

definite and symmetric.

one obtains

W(x) = x'qq'x

= x,_x (5.23)

It should be noted that _ is positive semi-

Now taking the gradient of W(x),

VW(x) = 2_x (5.24)

By substituting W(x) for V(x) in Equation (4.6),

W°(x) is given by

_°(x) : vW,(x)_ - lIB'VW(x)ll (5.25)

Substituting Equation (5.24) into Equation (5.25) and

expandingI_'VW(x)ll , one obtains

_°(x): 2x,_'_ - 2 _x'_'BB'RX"

= 2x'qq'_Ax- 2_ x'Q'__B'_x' (5.26)

But q is an eigenvector of A' and hence q'A = ]_q'. From the

lemma above, Q'BB'Q = IIB'qlI2Q. Therefore Equation (5.26)

becomes

W°(x) = 2_(x'_x) - 211B'qll_

or

G°(x) : 2},w(x) - 2kB'qll (5.27)
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Hence W(x) = (q,x) 2 satisfies Equation (5.16) and the proof

of the theorem is completed. Solutions of this type are

called eigenvector scalar product solutions since they are

scalar products of eigenvectors with the state vector.

By the use of Equation (5.14) the Liapunov function,

V(x), which is a solution to the Hamilton-Jacobi Equation

V(x) I -_iq'xl
= _In ( ilB'q]] + I) (5.28)

(4.15) is given by

It can be easily verified by direct substitution that

_°(x)= 1. The corresponding optimal control is given by

uO(x ) = -B'qq'x
ItB'qq'xil (5.29)

The obvious simplicity of the form of W(x) as com-

are

Example 5.1

LJ1oi]xI o]---- + U

x21 -2 -3 x I

The equations of motion of the system

(5.30)

pared to V(x) points out the reason for the use of the

modified Hamilton-Jacobi equation. However, V(x) is also

important, since surfaces of constant V(x) are surfaces of

constant time. This point is discussed further in the next

section, which is concerned with bounding the optimum

transition time. Before proceeding to the next section, it

is perhaps wise to consider a particular example of the

solutions presented above.
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It is desired to find the eigenvector scalar product solu-

tions for this problem and to show that they satisfy the

modified Hamilton-Jacobi equation. The corresponding solu-

tions of the Hamilton-Jacobi equation are also to be found

and verified.

By standard methods the eigenvalues are found to be

-I, -2 with the corresponding (unnormalized) eigenvectors of

_' being (2,1) and (i,I). It should be noted that any other

set of eigenvectors of _' could have been chosen, since the

resulting optimal control and Liapunov function is unchanged.

The above set was chosen for its computational convenience.

There are two solutions of the modified Hamilton-

Jacobi equation which can be obtained by the above method,

corresponding to the two eigenvectors.

First, for the eigenvalue -1, one obtains

Wl(x) = (q1'x)2 = (2xI + x2 )2 (5.31)

and Wl°(X) is given by

_l°(x) = -2w_(x) - 2 _ wt(xf

The corresponding solution of the Hamilton-Jacobi equation

is

v1(x) - in( 12xI + x21 + i) (5.32)

while the optimal control as given by Equation (5.29) is

uO(x) =
-(2X 1 + x 2)

12x I + X21
(5.33)

I
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The total time derivative of Vl(X) is then given by

.lx I + x21 + 1 12x I + x 2
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Now substituting from Equation (5.30) one obtains

V1(x'u) = 12xI + x21 + I 2xI + x21J

If u°(x) as given by Equation (5.33) is now substituted for

°(x)u, VI(X,U) becomes V1 "

I (2Xl + x2) 1 +VI°(x) = 12Xl + x212 + 12x I + x21
-(2x i x 2 )

S (2x I + x21]12x I + x 2

= -1

Hence Vl(X) satisfies the Hamilton-Jacobi equation as pre-

dicted. Then for the second eigenvalue, one obtains

W2(x) = (q2'x)2 = (xI + x2)2 (5.34)

and V2(x) is given by

1
V2(x) =_ in(21x i + x21 + I) (5.35)

Again it can be readily verified that V2(x) satisfies the

Hamilton-Jacobi equation. These results are used again in

Chapter 7.

Hence it has been verified that the scalar functions

given by Equation (5.28) are solutions of the Hamilton-

Jacobi equation. However, these solutions cannot be used
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directly, since the functions are only positive semi-

definite. In the next two chapters, methods of employing

these solutions to obtain sub-optimal control are developed.

However, before doing thls it is perhaps of value to examine

the eigenvector scalar product solutions in more detail. In

the next section these are investigated with respect to

bounding the optimum cost functional. In this manner It is

hoped that the reader is able to acquire a better under-

standing of the eigenvector scalar product solutions.

5.4 Bounds on Transition Tlme

In Section 4.2 it was briefly mentioned that if

V(x) = -L(x), then surfaces of constant V(x) become surfaces

of constant cost. This point perhaps needs further elabora-

tion. In the case of time optimal control, V(x) = -1, and

hence integrating with respect to t from to to tl, one

obtains

V(x 1) - V(x o) = to - t1

If the terminal state is taken to be the origin, then

V(x 1) = 0, and

tI - to = V(x °)

(5.36)

Thus the value of the Liapunov function at the initial state

of the system is equal to the transition time. If a

Liapunov function Vo(X) has been found such that Vo°(X)

-1, then Vo(X°) is equal to the minimum transition time
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i from x ° to the origin. Let S o be the surface composed of

all points x such that Vo(X) = To where Vo(X) is the solu-

I tion of the Hamilton-Jacobi equation, optimumthe Liapunov

function. Then S o is the set of all points from which it is

I possible to reach the origin in a transition time To by the

l use of time optimal control. This surface must be smooth

and enclose the origin. Figure 5.1 shows a two dimensional

l where the surface has become the closed curveexample So

designated by S O . Such a surface is called an isochrone.

l The problem of finding optimal control is actually a problem

l of finding the equation for the isochrone or V(x).

Since it is normally impossible to obtain the exact

i solution of the Hamilton-Jacobi equation, it is necessary to

approximate the solution. If such an approximate solution,

Va(X), is found, then let SI be the surface composed of all

l points x such that Va(X) = TO , i.e. the set of all points

from which the origin can be reached in TO seconds by the

I use of sub-optimal control. The surface S 1 must be within

or at most tangent to So as shown in Figure 5.1.

I One method for Judging the quality of a sub-optimal

control is now obvious. The more nearly the surface S 1

I coincides with the surface S o , the better the sub-optimal

i control. However, since the surface S o is generally not

known, such a method of Judging the quality of the approxi-

I mation is rather academic. Some other method is needed.

!

!
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One such method is to find another surface S 2 which

is entirely outside or at most tangent to So , as shown in

Figure 5.1. If such a surface could be found in a relative-

ly easy and straight-forward manner, the quality of an

approximation could be determined in the following manner.

If S 1 and S2 were close, then S 1 must be a good approxima-

tion, since S 1 must be at least as close to So as it is to

S 2. However, if S 1 and S2 were far apart, no conclusion

could be reached regarding the quality of the control, since

there would be no knowledge with respect to the relation of

S 1 and S o . This situation should be compared with the basic

concept of the Second Method, where a failure to construct a

Liapunov function generally yields no concrete results with

respect to stability.

It should be noted that the surface S2 does, in

general, not correspond to any physical control situation.

If there did exist an admissible control which would take

the system from S 2 to the origin in T o seconds, this would

contradict the assumption that So was optimal. However,

there may be points on S 2 which correspond to points on So,

and hence from these points the system can be returned to

the origin in T O seconds.

The eigenvector scalar product solutions, as devel-

oped in the preceding section, provide an unusually simple

method for obtaining a S2-type surface. Although the

I
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I surface generated does not uniformly approximate S o from the

outside, it is tangent to So at several points, as is

i out later.pointed

I Consider for a moment the interpretation that one
may give to Liapunov functions which are given by Equation

(5.28).

I In this case V(x i) is zero if and only if q'x I is zero.

i Thus the value of V(x °) does not correspond to the minimum

transition time from x° to the origin, but rather from x° to

I the hyperplane defined by q,x I 0. Since the surface

V(x) = To corresponds to the surface lq'xl = K, a constant,

which is two hyperplanes, V(x) = To is actually two hyper-

B planes symmetrically placed about q'x = 0. See Figure 5.2

for a two dimensional example of these V(x) equals a con-

B and trajectories of the system.stant surfaces typical

Since the origin is one point on the hyperplane

V(x) = O, then V(x °) must be equal to or less than the mini-

i mum transition time from x° to the origin. If it were

greater, there would exist a control which would transfer

g the system to the hyperplane in a time less than V(x°),

which contradicts the optimality of the Liapunov function

i given by Equation (5.28). Therefore the surface (hyper-

i planes) V(x) = To must be entirely outside or at most

tangent to the So surface.

I
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Surfaces of Constant V(x) for

Eigenvector Scalar Product Solutions

I

I



I

I

!

i

i

I
I

l
I
i

t
I

I
1
I

56

It is very simple to show that the V(x) = T surface
o

must be tangent to S o in two places. Since the system is

controllable, there must be two points (one on each hyper-

plane) from which the origin is reached in TO seconds as a

special case of reaching the hyperplane q'x = 0. See points

xA and xB in Figure 5.2. But these points must be on So;

otherwise they would contradict the optimality of So . Hence

there are two points at which the V(x) = To surface is

tangent to S o .

Since the n eigenvalues are distinct, the eigen-

vectors are linearly independent and hence the n surfaces

(hyperplanes) are non-coplanar (should probably be non-

cohyperplanar). Therefore the boundary of the set of points

for which Vi(x) _ To, i = 1,2,''.,n is a closed surface.

See Figure 5.3 where the cross-hatched area is such a set.

However, every point on this surface must be outside or on

the S o surface, since each boundary point is on some surface

Vi(x) = To , and by the argument above, each such point is

outside or on S O . Therefore this surface must be an S2-type

surface.

The fact that there are 2n points at which the above

S 2 surface is tangent to the So surface can be argued in the

i following manner. By the argument presented above, the sur-
w

face Vl(X) = To must be tangent to S o at two points. Since

I from these points it is possible to reach the origin in To

seconds, it is also possible to reach all of the other

I

I
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Vi(x) = 0 surfaces in To seconds from these points. There-

fore these points must be on both the S 2 and the S o surfaces.

By a similar argument, it can be concluded that there are 2n

points which are common to S 2 and So . See Figure 5.3 which

shows a typical S2 surface generated by this method.

Thus by the use of the eigenvector scalar product

solutions it is possible to obtain a relatively good S 2 sur-

face in an unusually simple manner. The inability to find

such surfaces has been a serious difficulty in designing

approximately time-optimal systems in the past. Without

such S 2 surfaces, it is impossible to Judge the quality of a

sub-optimal system without actually obtaining the optimal

solution. These S 2 surfaces are used in the next chapter in

order to evaluate the sub-optimal method presented there.

!
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CHAPTER 6

SUB-OPTIMAL CONTROL WITH NON-SINGULAR CONTROL MATRIX

6.1 Introduction

In this chapter a method for designing sub-optimal

control systems is developed, based on the eigenvector

scalar product solutions presented in the previous chapter.

The control matrix, B, is assumed to be non-singular for the

work presented in this chapter. The method is developed

first for second-order systems in order to be able to carry

out a geometric representation and interpretation of the

method. A second-order example completes the presentation.

Following the development of the sub-optimal control

method for second-order systems, a generalization to n-th

order systems is made. A third-order example is used to

illustrate the generalization. The chapter concludes with a

brief discussion of the method and its application.

It is perhaps of value to state the basic optimiza-

tion problem that is considered in this chapter. For linear

systems whose laws of motion are described by

x = _Ax + B_u

where the eigenvalues of _ are real, distinct and non-

positive and the matrix B is non-singular, it is desired to

find time-optimal, closed-loop control corresponding to a

59
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transition from x ° to the origin. The control region, U, is

the set of all control vectors, u, such that llull2 -_ 1.

6.2 Sub-Optimal Control of Second-Order Systems

In this section, a method of sub-optimal control of

second-order systems with non-singular control matrices is

developed. Before beginning this development, it is neces-

sary to modify slightly the eigenvector scalar product

solution of the previous chapter.

This modification involves a generalization of the

bound on the norm of the control vector from unity to some

unspecified constant, p. If such a change is made either by

transforming the control vector or by repeating the work of

Chapter 5, the Liapunov function, V(x), as given by Equation

(5.28) becomes

I (_lq'xl
V(x) = -_-In piIB'q---_ + I) (6.1)

and the corresponding optimal control is

uO(x ) = -pB'qq'x (6.2)

ll_'qq'xll

As would be expected, for a fixed initial condition, x °,

increasing p causes V(x °) to decrease, i.e. the transition

time decreases with increasing control effort. Since the

numerical value of V(x) is dependent on both the system's

state and on the norm of the control vector, V(x) is written



i

I

I
I

as V(x,p) to indicate this relation. Similarly, u is

written as u(x,_).

A general second-order system with real, non-
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I

positive and distinct eigenvalues, _ and _ is considered

in this section. For each eigenvalue, there is an eigen-

vector, designated by ql and q2 respectively. Associated

with the two eigenvectors are two Liapunov functions given

by Equation (6.1), Vl(X,_) and V2(x,p) , and their corre-

sponding optimal controls ul(x,p) and u2(x,_).

It may seem strange to speak of two optimal controls.

The reader, however, is reminded of the significance of

these controls. The control u I transfers the system from

i any initial point to the surface V 1 = 0 in minimum time,

i while u 2 transfers the system to the surface V 2 = 0 in mini-

mum time. Hence it is possible to have two optimal controls

I since the problem is different in each case.

For some point in the state space, x o, the control

i given ul(x,p) transfers the system from x° to some point,

x 1

i , on the surface Vl(X,p) = 0 in minimum time. Typical

points and the corresponding optimal trajectory are shown in

Figure 6.1. In the case of second-order systems, surfaces

of V(x) equals a constant become lines. That ul(x,_) is, in

fact, constant during this transition can be shown in the

following manner.

For a given eigenvector, ql, B,ql in Equation (6.2)

a constant vector while ql'x is a scalar. Hence ul(x,p)is
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must be a vector parallel to B,ql; its direction is deter-

mined by the sign of the scalar quantity ql'x. Since the

xi(t)'s are continuous functions of time, it is necessary

for ql'x to be zero before it can change sign. But if ql'x

is zero, then Vl(X,p) is also zero. Therefore the sign of

ql'x cannot change during the transition from x ° to x 1.

Hence ul(x,p) must be a constant vector, whose norm is equal

to p and whose direction is given by B'qlql'x. Figure 6.2

shows a typical control vector, ul(x,_).

Consider now another constant control vector, u, as

shown in Figure 6.2 which is equal to the addition of

ul(x,p) and any arbitrary constant vector r perpendicualr to

ul(x,p). Therefore

u = ul(x,_) + r (6.3)

where r is any constant vector such that r'ul(x,_) = 0. The

transition time from the point x ° to the line Vl(X,p) = 0 is

independent of r; this fact can be shown in the following

manner.

Consider the Liapunov function Vl(X,p) as given by

Equation (6.1). Now computing its total time derivative,

one obtains

- x'qq'_

Vl(X'f)) - -_klq'xl2 + plIB'qq'xll

x'qq'(Ax + Bu)
= -_lq'xl 2 + pllB'qq'xll (6.4)
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Substituting Equation (6.3) for u gives

_l(X,p ) x'qq'_Ax + x'qq'B_ul(x,_) + x'qq'Br
= -_lq'xl 2 +pll_'qq'xli - (6.5)

However, r is perpendicular to ul(x,p) and by the argument

above ul(x,p) is parallel to B'q. Therefore r must be per-

pendicular to B'q and the scalar product of r and B'q must

be zero, i.e. q'Br = 0. Hence the third term in the numera-

tor of Equation (6.5) must be zero. Therefore

x'qq'_Ax + x'qq'Bul(x,p) (6.6)
Vl(X'P) = -_lq'xl 2 +piIB'qq'xll

By direct substitution of ul(x,_) as given by Equation (6.2)

it can be readily verified that Vl(X,p) = -1. Since neither

Vl(X, p) nor Vl(X,p) are functions of r, it is obvious that

the transition time from x ° to the line Vl(X,p) = 0 is

independent of r.

From the argument above, one may conclude that for

any control u only that portion of u which is parallel to

ul(x,p) is important in determining the transition time from

an initial point to the line Vl(X, p) = 0. One may draw a

similar conclusion for u 2 and V 2.

x ° let the magnitude of theFor some initial state, ,

optimal control vectors, u1(x°,P1) and u2(x°,P2) , be chosen

such that Vl(X°,p 1) = V2(x°,_ 2) = T. Therefore the control

vector ui(x°,Pi) transfers the system from x° to the line

V i = 0 in T seconds. Now consider a vector u such that the
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portion of u which is parallel to u i is equal to ui(x°,Pi).

See Figure 6.3 for a graphical representation of this situa-

tion. The magnitude, _i' of the portion of u which is par-

allel to u i may be obtained from the scalar product of u and

a unit vector parallel to ui. Hence

Pi = u'ui(x°'l) (6.7)

Since only the portion of u which is parallel to u i

has any effect on the time necessary to transfer the system

from x ° to V i = 0, u must transfer the system from x ° to

both V 1 = 0 and V 2 = 0 in the same time. But V 1 = V 2 = 0

can only occur at the origin; hence u must transfer the

system from x° to the origin in Vl(X°,_l) = V2(x°,P2) = T

seconds.

Since setting Vl(X°,P1) = V2(xO,p 2) specifies only

the relative magnitude of _1 in terms of _2' there are an

infinite number of vectors which satisfy this condition.

However, only one of these vectors has unit length. This is

then an admissible control which transfers the system from

x ° to the origin in a finite time, Vl(X°,_l). This is, in

general, not the minimum time, but it is an acceptable com-

promise between system complexity and speed of response, as

is shown later.

Several significant aspects of this sub-optimal con-

trol method should be noted. First, once the control is

obtained, it is constant for the entire transition time.
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For small disturbances, the control varies only slightly,

which is helpful in mechanizing the controller. The con-

trol vector does not require rapid variations after its

68

I
I

I

initial setting and hence only a minimum of recalculation of

the control vector is necessary during the transition time.

This should simplify the instrumentation of the controller.

Second, by the use of this method the transition

time from any point to the origin can be easily obtained.

I

I

This may be done by first setting the norm of the control

vector equal to unity and then solving Vl(X°,p 1) =

V2(x°,_2) = T for T, which is the desired transition time.

Isochrones can be found by choosing a value of T and finding

I the set of all points x such that Vl(X,_ 1) = V2(x,_ 2) = T

i and Ilull = 1. An interesting aspect of such isochrones is

that for a given T, they are quadratic in terms of x I and x 2.

I This method also makes it possible to obtain easily

and directly the actual trajectory of the system from x ° to

I the origin. This can be done in the following manner.

I

I
I

I

After finding the transition time, To, as described above,

choose any time T _ To; then solve for the point x such that

Vl(X,Pl) = V2(x,_2) = T with Pl and _2 as given above. This

is the state of the system at T seconds before reaching the

origin, or To - T seconds after leaving the initial state.

This allows one to obtain the position of the system at any

time during the transition to the origin with no knowledge

of any previous state, thus eliminating any accumulation of
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error. The work involved is strictly of an algebraic

nature; it is not necessary to solve any differential equa-

tion. Both of these last two aspects of the method aid one

in evaluating whether the performance of the sub-optimal

system is satisfactory.

One further aspect of this method should be men-

tioned because of its importance relative to the implementa-

tion of the method. The simultaneous solution of the

equations Vl(X°,P1) = V2(x°,_2) and llull = 1 is an algebraic

manipulation, although it is not trivial. This should be

contrasted to many of the presently advocated methods for

which it is necessary to solve simultaneously the usual non-

linear differential equations of the two point boundary

value nature. The computational advantage is obvious from a

hardware standpoint. Since these computations are alge-

braic, it is possible to carry them out continuously on an

analog computer to create continuous control.

Before considering a numerical example to illus-

trate the method, it is perhaps of value to outline the

complete method for reference.

l) Obtain the eigenvalues and eigenvectors of the

matrix A'.

2) Obtain the two Liapunov functions as given by

Equation (6.1), VI(X,O) and V2(x,o) , and their

corresponding optimal controls, uI(x,0) and

u2(x,_).
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3) For a given point, x°, solve the relations

Pi = u'ui(x°,l) to obtain u I and u 2 in terms of

P1 and P2"

4) Solve Vl(X°,P1) = v2(x°,P2) and llull= 1

simultaneously to obtain P1 and P2"

5) By the use of the relations obtained in Step

Three, find u, the desired sub-optimal control.

A method of mechanizing the last three steps of this proce-

dure by the use of a digital or analog computer to create a

closed-loop system is shown schematically in Figure 6.4.

Two points should be emphasized again. First, once the con-

trol is determined, it remains relatively constant. Second,

the operations required of the computer are strictly alge-

braic. It should also be noted that although the procedure

is given in a step-by-step fashion, the control can be

computed continuously by the use of an analog computer.

Example 6.1 In order to illustrate the method of

sub-optimal control developed above, consider the following

system.

xol -2 -3 x 0 u
(6.9)

It is desired to transfer the system from the point x ° =

(2,1) to the origin with llull_ 1.
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By standard methods the eigenvalues are found to be

-1 and -2 with the corresponding eigenvectors of A' being

(2,1) and (1,1). The two Liapunov functions as given by

Equation (6.1) are

vl(x,m) = in (12Xl + x21 + 1) (6.10)
2p

i 41Xl + x21+ I) (6.11)

v2(x'_) =_ ( 4_e

The corresponding optimal controls as given by Equation

(6.2) are

u_(x p = -pC 12Xl + x21 )
(6.12)

2 ] 21 ]Ul(X,P)

= Xl + x 2 )

u22(_,p)j "P¢lXl + x21 1/_/T]
(6.13)

This completes Steps One and Two in the procedure outlined

above.

= ul(x°,l) and u2(x°,l) becomeNow for x° (2,1),

ul(x°,l)= (-I,o) (6.14)

u2(x°,1)= (-214_,-II_) (6.15)

Using the relation Pi = u'ui(x°'l)' one obtains

I
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Obtained is

P1 = 0.645

P2 = 0.236

Therefore a control vector u = (-0.645,+0.763 ) transfers the

system from the point x ° = (2,1) to the origin in Vl(X°,#l)

= 1.58 seconds.

6.3 Generalization

In the previous section a sub-optimal method was

developed for second-order systems. A generalization of

P1 = -Ul

#2 = -2Ul/VT-Uz/VT

Then solving for u I and u2 in terms of P1 and 02 yields

Ul = -Pl

u2 = +2P1 - "_#2

Now setting llull= 1, one obtains

(-pl)2 + (-2p1 + 47#2)2 = 1 (6.16)

Setting Vl(X°,#l) = V2(x°,#2) , one obtains

(___. =- ( 12
1 in + 1) (6 17)

In 5 + 1) 2 _

By solving Equations (6.16) and (6.17) simultaneously, it is

possible to obtain Pl and P2" If this is done the solution
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this method to n-th order systems is presented in this

section. Since all of the proofs and arguments carry over

directly to the n-th order case, only the conclusions are

presented here.

In the n-th order case, there are n real and dis-

tinct eigenvalues _, _2' "'''_n and hence n linearly

independent eigenvectors ql, q2, ..., qn. Associated with

each eigenvector is a Liapunov function given by Equation

(6.1), Vl(X,p) , V2(x,_), ..., Vn(X,_ ) and their corresponding

optimal controls ul(x,_), u2(x,_), ..., un(x,p). As before,

for some point in the state space, x °, the control given by

ui(x,_) transfers the system from x° to some point, x 1, on

the hyperplane Vi(x,_) = 0 in minimum time. Again the con-

trol ui(x,_) is constant during the entire transition time.

By an argument identical to that presented in the

previous section, it can be shown that for any control u

only that portion of u which is parallel to ui(x,_) affects

the transition time from any initial point to the hyperplane

Vi(x, p) = 0.

If for some initial state x° a control vector u is

chosen such that Vl(X°,_l) = V2(x°,_2) = .., Vn(x°,_ n)

where _i = u'ui(x'l)' then this control must transfer the

system to the origin in Vl(X°,_l) seconds. Since there are

only n-1 equations in the n unknowns, @1' _2' "''' _n' there

is an infinite set of control vectors which satisfy these

equations. From this set, there is only one vector whose
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norm is equal to unity. Thls is an admissible control which

transfers the system from any point x ° to the origin in a

finite, although usually not minimum, time.

Then the procedure for obtaining a sub-optimal

control can be stated in the following steps.

1) Obtain the eigenvalues and eigenvectors of the

matrix A'

2) Obtain the Liapunov functions as given by

Equation (6.1), Vl(X,p), V2(x,_) , "'', Vn(X,p)

and their corresponding optimal controls,

ul(x,0), u2(x,0), ..., un(x,0).

3) For a given point, x °, solve the relations

_i = u'ui(x°'l) to obtain u i in terms of the

_i.

4) Solve Vl(xC,_z) = vZ(x°,_2) = ... = Vn(x°,pn)

and llull = 1 simultaneously to obtain

PI' _2' "''' _n"

5) By the use of the relations obtained in Step

Three, find u, the desired sub-optimal control.

As before the last three steps in this procedure can be

mechanized by the use of a digital or analog computer in

order to create a closed-loop system.

All of the features of this method which were

pointed out for second-order systems carry over directly for

n-th order systems.

!
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Example 6.__2 As an illustration of the above proce-

dure, consider the third-order system shown in Figure 6.5.

The equations of motion may be written as

B w

-3 1 0

0 -2 1

0 0 -1

a

x I

x 2

x 3

+

m m

1 0 0

0 1 0

0 0 1

I

I

I

I

_:2

I

I
i

u

u I

u 2

u3.

+1)

V3(x, p) =--_ln (12Xl - 2xz + x3! + 1)
P

I The corresponding optimal controls are then

I ul(x,1) 0

u_(x,1 Ix31

!
!

(6.1) to be

V2(x,p ) = lln (V_Ix2- x_l
P

V l(x,_) = in (_ + 1)
P

It is desired to find a sub-optimal control which transfers

the system from the point x° = (1,2,3) to the origin. The

norm of the control vector is constrained to be equal to or

less than unity.

The eigenvalues are -1, -2, and -3 with the corre-

sponding eigenvectors of A' being (0,0,1), (0,1,-1) and

(2,-2,1). The Liapunov functions are found from Equation
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u (x,11 (2x I - 2x 2 + x3) _2131u3(x ,1 = - 12Xl - 2x2 + x 31

u](x ,1 1/3J

By the use of the initial state x ° = (1,2,3) and the rela-

tions Pi = u'ui(x°'l)' it is possible to solve for the

components of the control vector in terms of the Pi's.

uI = -Pl/2 + ,lz P2 - 3P3/2

u2 = "Pl + _ P2

U3 = - P1

By setting VI(X°,P1) = V2(x°,02) = V3(xC,p3), one obtains

the following two equations

ln(_+ 1)=_in (_+ 1) (6.18)

ln( + 1) = in (_+ 1) (6.19)

In order to obtain the desired control vector, it is

necessary to solve Equations (6.18) and (6.19) simultaneous-

ly with the condition UuU = 1. The answers that one obtains

are

P1 = 0. 714

i
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P2 = 0.0543

P3 = O. 00716
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The desired sub-optimal control is then

u(x °) = (-0.291,-0.637,-0.714)

This control transfers the system from x° = (1,2,3) to the

origin in 1.65 seconds.

6.4 Discusslono__f the Method

In the previous sections, a method of obtaining sub-

optimal control of systems in which the control matrix is

non-singular was developed. Every sub-optimal control meth-

od should satisfy two requirements. First, the method

should make it easy to design and implement the sub-optimal

control system. Second, the performance of the sub-optimal

control system should be acceptably close to the true

optimum.

This method has several aspects which assist in the

design and implementation of the sub-optimal system. These

points have been discussed in Section 6.2, but they are

repeated here for reference. In the absence of a disturb-

ance the control vector, once obtained, remains constant

until the system reaches the origin. The transition time

from any point to the origin as well as the trajectory to

the origin can be obtained readily. The isochrones are easy

to find. In designing a closed-loop control system using
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this method, it is necessary for the controller-computer to

solve only algebraic equations, thus allowing continuous

control.

Until now the quality of the performance of the sub-

optimal system has been ignored. It is shown in this

section that the quality is acceptable. Because of the

difficulty involved, it is not possible to obtain the true

optimal solution, and hence it is necessary to use the

approach discussed in Section 5.4. In particular, it is

shown that the sub-optimal isochrone, $1, is tangent to the

optimal isochrone, So, at several points.

As was pointed out in Section 5.4, there must be two

points on the Vl(X,1) = To surface from which the origin is

reached in To seconds as a special case of reaching the

surface V 1 = 0 using the control u = ul(x,1). Since the

system reaches the origin in To seconds, it must also reach

all of the Vi(x,1) = 0 surfaces in the same time. Hence

Vl(x°,l) = V2(x°,P2) = -.. = Vn(X°,Pn) , where _i =

ul(x°,l)'ui(x°,l), is satisfied at this point. The control

ul(x°,l) therefore satisfies all of the conditions of the

sub-optimal control, and hence it is the sub-optimal control

for these points. Therefore these points must be on the

sub-optimal isochrone. But it is shown in Section 5.4 that

these points are also on the SO surface. Hence the sub-

optimal and optimal isochrones must be tangent at these

points.

!
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In a similar fashion one could argue that there are

two points on each Vi(x,1) = To surface which are on both

the optimal and sub-optimal isochrones. Hence there must be

2n points at which these surfaces are tangent. Since both

of the surfaces are smooth, it is logical to assume that

they are close in some region about each of these points.

One could get a direct measure of the quality of the

sub-optimal control by determining the optimal isochrones

for particular problems such as the ones in Examples 6.1 and

6.2. However, the advisability of this is highly question-

able. First, as was pointed out in Chapter 2, the computa-

tional labor involved in obtaining the optimum solution for

even one point is horrendous for all but trivial problems.

To find a complete set of such points is almost unthinkable.

Second, if one were to carry out such computations, the most

that one could conclude would be that the sub-optimal method

was good or bad for that particular example.

It appears reasonable from the above points to

conclude that this sub-optimal control method represents an

acceptable compromise between system complexity and speed of

response.

Although the method presented in this chapter is

significant and important in its own context, its major

significance is in providing an underlying framework for the

next chapter. In the case of non-singular B matrix, several

other sub-optimal methods have been suggested. None of

!
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these methods, however, has, as of yet, produced a sub-

optimal control better than that presented here. The number

of practical systems for which B is non-singular is limited,

and hence the material in the next chapter is of greater

practical significance.



I
I

I

!
I

I

I

I

I
I
I

i

I

I
I

I

I

I

CHAPTER 7

SUB-OPTIMAL CONTROL WITH SINGULAR CONTROL MATRIX

7.1 Introduction

In the previous chapter a method for using the

eigenvector scalar product solutions for the sub-optimal

control of systems with non-singular control matrices was

developed. This restriction on the control matrix is

removed in this chapter. The result of this change is that

it is no longer possible to develop a single method which

handles all problems. Hence the approach taken is to devel-

op two methods, each of which has special restrictions. By

carefully delineating the range of applicability, the advan-

tages and the disadvantages of each method, it is possible

to choose the method or the combination of methods which

best applies to a given problem.

In addition to the control matrix being singular, it

is assumed that the dimension of the control space, r, is

equal to the rank of the matrix B which is less than the

dimension of the state space, n. If this is not true, then

one may always reduce the number of control variables in

the following manner.

Since the control matrix, B, is singular and n by n,

there must be at least one column of B which can be formed

by a linear combination of the other columns. For

83
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convenience let the last column be formed by a linear combi-

nation of the previous columns. Then

n-1

bin = _ c
J=l jbij

Therefore Equation (2.2) _ecomes

(7.i)

n n-1 n-I

I xi = _ al + _ bi + _ cjbijUnJ=l jxj J=l juj J=l

n n-1

I = _ aijxj + _j=l bij(uj + cjun)
(7.2)

I

I
I

I

I
I

Since un only appears in terms of (uj + CjUn) , let

wj = uj + cju n
J = 1,2,''',n-1

In matrix form Equation (7.3) may be written as:

-1

0

0

1 0

@ • @

0

u_
0 0 0 cI

u 2
0 "'" c2

1 o : •

0 1 Cn_,'

- un

w 1

w2

Wn- 1

(7.3)

(7.4)

I

I

Since the coefficient matrix on the left is of rank n-1 and

has only n-1 rows, the coefficient matrix and the augmented

coefficient matrix must be of the same rank. Therefore it

I

I

is possible to solve for the u's in terms of the w's. In

fact, since the rank is only n-l, there are an infinite

I
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number of solutions.
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Therefore, there exists a matrix

u = _Dw (7.5)

Then the requirement on the norm of u becomes

Ilull 2 w'D'Dw _ 1 (_.6)

The matrix D'D is an n-1 by n-1 positive definite matrix;

therefore there is an n-1 by n-1 non-singular matrix E such

that E'E = D'D. Now let a new set of n-1 control variables

be defined as

v= Ew

Then w'D'Dw = w'E'Ew = v'v = llvlt2 -_ 1 Hence a set of n-1
-- m -- @

control variables has been generated with the requirement

that its norm be less than or equal to unity. Equation

(2.2) has now become

= _Ax + BD__.EE-Iv C7.7)

This process can be repeated until the number of control

variables is equal to the rank of B.

It is noted in Chapter 5 that the eigenvector scalar

product solutions do not require a non-singular control

matrix; these solutions are therefore used in creating the

sub-optimal methods of this chapter. The sub'optimal con-

trol method for systems with non-singular control matrices

is based on the concept of picking a control vector, u, such

!
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that the n equations Vl(X,p 1) = V2(x,_2) = ... = Vn(X,_ n)

and llull= 1 are simultaneously satisfied where Pi =

u'ui(x,1). It is possible to obtain a solution to these n

equations because there are n control variables.

It is not possible to apply such an approach direct-

ly for the systems being considered in this chapter, since

the number of control variables is less than n. Hence if

the control space is r-dimensional, it is possible to solve

only r of these equations simultaneously. Thus the method

of the previous chapter must be modified.

One approach is to simply disregard n-r of the equa-

tions. If, for example, only the first r Liapunov functions

are equated while maintaining the requirement on the norm of

u, then it is possible to satisfy this set of r equations.

The consequence is that the control chosen drives the system

to the state V 1 = V 2 = ".. = V r = 0, while the remaining n-r

Liapunov functions are, in general, non-zero. This concept

forms the basis of the method presented in Section 7.2.

Another approach offers perhaps the best solution,

although it is the most difficult to apply. It is shown

later that the set of all states such that the n equations

V 1 = V 2 = ... = Vn and llull= 1 can be simultaneously satis-

fied by an r-dimensional control, is an r-dimenslonal subset,

R, of the n-dimensional state space. It is obvious that the

origin must be included in this subset. Then from any point

in R it is possible to transfer the system to the origin in

!
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finite time with an r-dimensional constant control vector.

However, since R is only r-dimensional, it is necessary to

first transfer the system to this subset. In general it is

I
I

I

necessary to make changes in the control vector in order to

get into R. Once the system is in R, a constant control

vector, u, can be determined, which transfers the system

directly to the origin.

In the following sections each of the methods is

I
discussed in detail including examples. As a final result,

the methods are combined to illustrate the flexibility of

I the approach.

I

I

I

7.2 The Ban_-Coast Method

In Chapter 6 a sub-optimal control method was devel-

oped based on the concept of finding a control vector with

unit magnitude such that the time needed to reach each of

the n surfaces of V i = 0 was equal. This technique required

i the simultaneous solution of the n algebraic equations

Vl(X,P1) = V2(x,p 2) = ... = Vn(x,pn) and llull= 1. These n

I equations could be solved simultaneously because the control

space was n-dimensional and hence there were n control

i variables.

I For the work in this chapter, the control space is

r-dimensional, where r < n, and therefore the direct solution

I

I

of these n equations is not possible for an arbitrary system

state. Hence some modification of the method of Chapter 6

I
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is necessary. The approach taken in this section is based

on the concept of equating only r of the eigenvector scalar

product solutions to create r-1 equations. Combining these

r-1 equations with the requirement on the control norm, one

obtains r equations. Because there are r control variables,

these r equations can be satisfied simultaneously. There

are two questions which are raised by such an approach.

First, what are the consequences of equating only r of the

eigenvector scalar product solutions rather than all n?

Second, which eigenvector scalar product solutions should be

chosen? Before answering these questions, it is convenient

to introduce another class of scalar functions.

Consider for the moment the case where u = 0 and

Equation (2.2) becomes

_=_Ax

Now define a set of scalar functions, Zi(x), by

Zi(x) = qi,x
i = 1,2,-..,n

Then by application of Theorem 5.3, the total time deriva-

tive of Zi(x) is given by

Zi(x) = _iZi(x) (7.8)

Given the state of the system at t = T, the value of

each Zi(x) function at t = T is uniquely given by Zi(x(T)) =

qi'x(T). The value of each Zi(x) for any time t _ T can be
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found by solving the simple first-order linear differential

Equation (7.8) with the above initial conditions.

Zi(x(t)) = qi'x(t) = Zi(x(T))e _i(t-T) (7.9)

Thus given the value of any Zi(x) at t = T, its value at any

time t _ T is uniquely determined by the use of Equation

(7.9).

Now consider again the idea of equating only r of

the eigenvector scalar product solutions. Since the order-

ing of the functions is arbitrary, for convenience, the

first r functions are equated.

x ° the r equationsIf for an initial state, ,

Vl(X°,P1) = V2(x°,P2) = "'" = Vr(X°,Pr) and llull = i where

_i = u'ui(x°,l) are solved simultaneously, then a control

vector u is obtained which transfers the system from x ° to a

X 1
VI(xl) = V2(xl) = "'. = Vr(xl) = 0 instate such that

time T = Vl(X°,P1). In general the values of the remaining

n-r eigenvector scalar product solutions are non-zero at x 1.

Hence the system has not been transferred to the origin and

further action is necessary.

It can be readily observed from Equation (6.1) that

if Vi(x,Pi) is zero_ then qi'x is zero, and hence Zi(x) is

also zero. Conversely if Zi(x) is zero, then Vi(x,p i) is

zero. Hence at the state x1, Z 1 = Z 2 = .-. = Zr = 0 while

the values of the remaining Z's are non-zero.

I



I

I

I

90

If, after reaching the state x I where the values of

I
the first r eigenvector scalar product solutions are zero,

the control vector u is set to zero, then the value of each

l Zi(x) for t _ T is given by Equation (7.9). Obviously for

t _ T, Z 1 = Z 2 = ... = Z r = 0, and hence the system remains

I on the V 1 = V 2 = ... = Vr = 0 surface. The value of each of

the other Zi, i = r+l, r+2, ..., n is exponentially

I approaching zero with a time-constant equal to 1/l_iJ. This

I can only be true if the system is exponentially approaching

the origin. However, the rate at which the system approaches

I

I

the origin is dependent on the longest time-constant, i.e.

the smallest value contained in the set l_r+lt, l_r+21, -'.,

l nl.

I

I

I
I

Which eigenvector scalar product solutions to equate

is now obvious. First let the eigenvector scalar products

be ordered such that i_il _ J_jl if i _ J. Then equating the

first r eigenvector scalar product solutions to obtain the

control u results in the system approaching the origin with

a time-constant equal to 1/i_+lJ. No other choice of

eigenvector scalar product solutions can make the system

I

I
I

I

approach the origin faster.

The complete procedure then is the following. First

obtain the r eigenvector scalar product solutions associated

with the r smallest eigenvalues. Then for an arbitrary

initial state, x°, solve simultaneously the r equations

Vl(X°,_ 1) : V2(x°,_2) = ... = Vr(X°,Pr) and liuU = 1

I
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simultaneously as outlined in Chapter 6. Use the control u

to transfer the system from x ° to x I where Vl(xl,p 1) = ... =

Vr(xl,pr) = 0. At x I the control is turned off and the

system is allowed to coast uncontrolled toward the origin

with a time-constant equal to 1/I_r+11. Again this proce-

dure can be mechanized in a manner similar to that presented

in Chapter 6. The only difference is that when the state of

the system reaches the surface V 1 = V 2 = ... = Vr = 0, the

control is turned off.

The method of sub-optimal control presented in this

section is most advantageously applied in cases where the

magnitudes of r or less of the eigenvalues are small rela-

tive to the remaining eigenvalues. If this is the case,

i during the controlled portion of the response, the small
eigenvalues can be effectively eliminated from the system by

I driving the system to the surface V I = V 2 = ... = V r = 0.

The system then approaches the origin with only the rela-

I tively fast time-constants present.

As an example, consider a third-order system with a

i two-dimensional control space and eigenvalues of -1, -2, and

I
I

I

-10. By selecting a control vector such that for some

initial state, x°, Vl(X°,p 1) = V2(x°,P2 ) and llull = 1, then

the system is transferred to a state where V 1 = V 2 = 0. The

system then approaches the origin with only the time-

constant 1/10 present, thus yielding relatively rapid

I response.

I
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One further aspect of this method should also be

mentioned. Although the method was initially developed to

yield approximately time-optimal performance, the method

appears to present a good compromise between time- and fuel-

optimal performance. The amount of fuel expended is roughly

to S_ulldt. Hence during the controlledproportional por-

tion of the response, the fuel expenditure is high while

after the turn-off of the control, the fuel expenditure is

zero. This is characteristic of time- fuel-optimal perform-

ance. Hence the method presents a distinct advantage in

cases where the total fuel expenditure is of importance.

7.3 Th____eUnbounded Control Method

In the previous section the inability to solve n

equations with only r control variables was bypassed by

equating only r of the eigenvector scalar product solu-

tions. It seems reasonable to conclude that if the restric-

tion on the norm of the control vector were removed, r+l of

the eigenvector scalar product solutions could be equated.

Although a control vector with a norm greater than one

violates one of the basic assumptions of this work, the con-

cept is still of theoretical, if not practical, importance.

However, as is shown by the example below, removing the

restriction on the control norm does not allow r+l eigen-

vector scalar product solutions to be equated at an arbi-

trary system state.

I
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Example 7.i Consider again the second-order system

with scalar control discussed in Example 5.1.

t

_- + U

x2J -3 x

(7.10)

The eigenvector scalar product solutions of the Hamilton-

Jacobi equation as found in Chapter 5 are

Vl(X,P1) : in (12Xl + x21 + 17
#I

v2(x,p2)--_In (21Xl+ x21+ 1)
P2

with the associated optimal controls

(7.11)

(7.12)

ul(x,P1) : -Pl (2xI + x2)
12Xl + x21

u2(x,P2) =-_ (xl + x2)
Ix I + x21I

i

I

I
i

I

I

(7.13)

(7.14)

Let the initial state of the system be x ° = (2,-3).

Then ul(x°,l) = -1 while u2(x°,l) = + 1. Hence no control

vector, independent of its magnitude, could cause both Pl

and P2 to be positive. Therefore it is impossible to satis-

fy the equation Vl(X°,P1) = V2(x°,_2 ) with any control

vector. It is obvious that any state in the region where

ul(x,l) _ u2(x,l) exhibits this same difficulty.

However, it is not possible to satisfy this equation

at every state in the region where ul(x,1) = u2(x,1). In

order to see this fact, set Vl(X,P1) equal to V2(x,P2) to

obtain:



I

I

I

i
in (,2x11 + x21 + 1)= lln (2,x11 + x21 + 1)

Pl _ P2
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(7.15)

Since the control is scalar, Pl must be equal to _2; there-

i fore Equation (7.15) becomes

In (12Xl + x_l + 1) = _ln

Solving for Pl' one obtains

(2,xII + x21 + 1) (7.16)
P1

I 2

I

I

I

!

12xi + x21 (7.17)Pl
2(Ix I + x21 - 12x I + x21)

In order for P1 to be positive, it is necessary that

12x I + x21 < Ix I + x21. Thus the region where it is possible

to solve the equation Vl(X,p 1) = V2(x,P2) is quite

restricted. Therefore, in spite of removing the restriction

on the norm of the control vector, it is only possible to

equate r+l of the eigenvector scalar product solutions in a

I

I

I

restricted region of the state space.

The method presented in this section has three

fundamental problems. First, removing the restriction on

the control norm is a violation of one of the basic assump-

tions of this work. Second, even with unbounded control, it

I

I

1

is not possible to equate r+l of the eigenvector scalar

product solutions for an arbitrary initial point. Third, at

best, this technique would allow the system to be driven to

a state where r+l rather than r of the eigenvector scalar

product solutions were zero. However, in the next section,

I another method of accomplishing this same result is

I
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presented which retains the restriction on the control norm.

With these fundamental problems, it is felt that this

approach offers no significant advantages and hence further

investigation of it seems unwarranted.

7.4 Th___eSwitched Control Method

In the previous sections the problem of satisfying

n equations with an r-dimensional control vector was solved

by simply disregarding or weakening n-r of the equations.

In this section the portion of the state space in which all

n equations can be satisfied by an r-dimensional control

vector is obtained. It is shown below that this region is

an unbounded r-dimensional subset, R, of the n-dimensional

state space. Since the subset R is only r-dimensional, an

arbitrary initial state is not in R, and hence it is

necessary to first transfer the system to R. Then from any

point in R, it is possible to determine a constant control

vector, u, which transfers the system to the origin in

finite time.

The problem of finding a control vector which trans-

fers a system from any point in R to the origin is exactly

the same as the problem treated in Chapter 6. However, the

problem of transferring the system from any arbitrary

initial state to R is new. A complete solution of this

problem for an arbitrary difference between n and r has not

been obtained. In fact, only the case in which the

!
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difference between n and r is equal to one has been solved.

But before investigating this problem, consider again the

determination of the subset R.

I

I

!

Let the eigenvector scalar product solutions be

ordered as in Section 7.2, i.e. such thati_il _ i_jl if

i _ J. Since there are only r control variables, in order to

solve simultaneously n equations there must exist n-r

relations among the state variables. Therefore the subset

I
R must be r-dimensional. Thus due to the fact that there

are only r control variables, the subset from which the

I
I

I

origin can be reached by the use of a constant control

vector is only r-dimensional.

Example 7.2 As an illustration of the determination

of a subset R, consider again the system discussed in

Example 7.1. It is not necessary to use the generalization

I

I

of the control vector norm, since u is scalar, and hence

both Pl and _2 are identically one if the norm of u is one.

The eigenvector scalar product solutions then become

I vl(x) = in (12xI + x21 + 1) (7.18)

I V2(x) = ½1n (21xI + x21 + 1) (7.19)

I In order to find the subset R, it is necessary to

equate V 1 and V 2 to obtain

m 1
in (12x I + x21 + 1) = _ln (21x I + x21 + 1) (7.20)
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and then to solve for the system state for which this equa-

tion is satisfied. If this equation is solved directly, two

one-dimensional subsets are obtained. However, only one of

these subsets is the true R subset from which it is possible

to reach the origin by the use of a constant control vector.

For the states comprising the other subset, the two optimal

uI and u 2 have opposite directions, andcontrol vectors,

hence it is not possible to transfer the system from these

states to the origin directly. Figure 7.1 shows a graphical

representation of both the true and false R subsets.

The reader may recognize the R subset as the time-

optimal switching curve as obtained by running time back-

wards. This fact, which can be easily verified, plays an

important role in the development of a method for transfer-

ring the system from any initial state to the subset R. It

should be noted that by the use of the above method a non-

parametric representation of the switching curve is obtained.

It should be noted that in the application of the

procedure developed below, it is not necessary to determine

the subset R explicitly as presented above. Inherent in the

method of transferring the system to the subset R is an

ability to determine when the system is in R. The subset R

was determined for the above problem, since it is helpful in

discussing the procedure for transferring the system from an

arbitrary initial state to R.

I
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Now consider the division of the state space into

the following three regions as shown on Figure 7.1.

Region I: u I = u2 and V 1 _ V 2.

Region II: u I _ u2.

Region III: u I = u2 and V 1 _ V 2.

It should be noted that the lines of division between these

regions are V i = 0 lines. Regions I and III are further

subdivided into positive and negative regions, depending on

whether ul is positive or negative. See Figure 7.1.

Since this problem is only second-order with scalar

control, the true time-optimal solution may be obtained by

standard techniques (Pontryagin 1962). If this is done for

x ° then the optimal trajectory obtainedsome initial state, ,

is shown in Figure 7.2. The corresponding optimal control,

u ° is equal to -1 from x ° to x c and +1 from x c to the

origin. Again it should be noted that the point x c at which

the change from -1 to +1 occurs is in the subset R. Hence

the optimum trajectory is, in fact, a path from any initial

state to R and thence to the origin. Therefore by investi-

gating more closely the optimal control from X ° to x c in

terms of the eigenvector scalar product solutions, perhaps a

procedure can be developed for transferring the system from

an initial state to R.

It can be readily seen that the optimal control, u °,

is equal to u I in Regions I and II. However, in Region III,

u ° is equal to -u 1. By the use of the description of these
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regions, one can formulate the optimal control policy in

terms of the eigenvector scalar product solutio_as the

following.

I

I

1) If u I _ u 2 u 1, use the control u = .

l 2) If u I = u 2 and V 1 _ V2, use the control u u 1

3) If u I = u 2, and VI<V 2, use the control

u = -u 1.

This policy is shown graphically in Figure 7.3. Such a

I
policy can be easily implemented on an analog computer to

yield continuous closed-loop, time-optimal control• How-

I

I

i

ever, closed-loop, time-optimal control of second-order

systems has been accomplished previously by other methods

(Pontryagin 1962). Hence the primary importance of this

result lles in the ability to generalize it to higher order

systems in which r = n-1. Before doing this, however, it is

I

I

I

perhaps of value to investigate in more detail the result

Just obtained.

So far the eigenvector scalar product technique of

the preceding paragraph has only been established for the

particular second-order system of Equation (7•10)• In the

I

I

I

following paragraphs, arguments are presented to show that

this technique is valid for any second-order system with

scalar control. The reader is reminded that only systems

with real, distinct, and non-positive eigenvalues are being

considered here. Emphasis is first placed on showing that

I for an arbitrary second-order system with scalar control,

I
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this technique transfers any initial state to R and thence

to the origin. Next the fact that this technique yields, in

fact, the time-optimal solution is proven.

In the following argument, the trajectory shown in

Figure 7.2 is shown to be typical of all second-order

systems of the class being considered here. Therefore, in

order to add greater clarity to the argument, frequent ref-

erence is made to Figure 7.2. It must be emphasized that

the trajectory shown follows from the argument which is

independent of the graphical representation.

Consider an initial state, x °, arbitrarily located

in Region I-, i.e. ul(x °) = u2(x °) = -1 and Vl(X°)> V2(x°).

Then by the use of the technique outlined above, the con-

trol u is set equal to ul(x°). Since ul(x °) = u2(x°), the

value of both V 1 and V 2 must be decreasing as time increases,

i.e. Vi(x(t))<Vi(x°) for t> 0. Hence there are two

possibilities to be considered.

First, the value of V 1 may reach zero before the

value of V 2 does. But if this were to happen, then there

is some intermediate state at which V 1 = V2, since initially

V 1 was greater than V 2. But that state is in R, and hence

the system has been transferred to R. However, V 1 cannot

reach zero before V2, since at x°, Vl(X°)>V2(x°) and the

value of Vi(x°) is equal to the time required to reach the

V i = 0 surface. The main reason for presenting this argu-

ment here is that in the case of nth-order systems, it is

I
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possible for the system to reach the R subset directly from

Region I.

Second, the value of V 2 may become zero first. In

this case u2 must change sign after the V2 = 0 line has been

crossed. The system has therefore crossed into Region II.

(See point x a in Figure 7.2.) The control u, however,

continues to be equal to u I = -1; since u I has not changed

direction, the control is constant.

Since in Region II, u = u I = -u 2, the value of V 1

continues to decrease with time, while V2 is now increasing.

After a finite time, given by Vl(Xa) , the value of V 1

becomes zero. (See point xb in Figure 7.2.) As the system

crosses the V 1 = 0 line, u I changes sign to +1, and u I again

becomes equal to u 2, and u is now given by -u I and remains

constant at -1.

The system is now in Region III+ with VI_ V 2 and

u I = u 2 = +1. Since u = -u 1, the value of both V 1 and V2

must be increasing with time. The question which arises is,

"Would V 1 become greater than V 2 again and hence, at some

time, is V 1 = V2?"

Consider again the scalar functions, Zi(x) , defined

by

Zi(x) = qi,x
i =1,2

(7.21)

For the controlled case, the total time derivative of Z i

becomes

!
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Zi(x) = kiZi(x) + qi'Bu (7.22)

Since the system is assumed to be controllable, qi,B_u must

be non-zero for each i.

Then Zl becomes

Now consider the case where kl = 0.

7.1(x) = ql,B_u (7.23)

and Zl(X) must grow without bound as time increases. In

case of a zero eigenvalue, the eigenvector scalar product

solution as given by Equation (6.1) becomes

Iq'xl
= pll 'qll (7.24)

Then by comparison of Equations (7.21) and (7.24), one sees

that the value of V 1 is growing without bound. Because the

eigenvalues are distinct, _2 must be negative and Z 2 is

exponentially approaching a constant value. Therefore V 2

remains finite as time increases. Since V 1 is growing with-

out bound while V 2 remains finite, it is obvious that at

some time V 1 becomes equal to V 2 and the system reaches the

R subset.

If both of the eigenvalues of A are negative, then

both Z 1 and Z 2 remain bounded and the system is driven

x ss where _ = 0. Hence the value oftoward a steady-state,

both V 1 and V 2 does not increase without bound. This steady-

state may be found by setting i equal to zero in Equation

(2.2) and then solving for x.
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xSS = .A'IBu (7.25)

But u = -i, and hence Equation (7.25) becomes

I xSs = A-i_Bu
(7.26)

I

I

I

Now substituting x ss into Equation (5.28) for the eigen-

vector scalar product solution, one obtains

i -_ki_qi'A-1Bl

Vi(xSS) = l_ i in ( liB,qill
+i) (7.27)

But qi is an eigenvector of A', and hence

qi, A = _i qi' (7.28)

Then post-multiplying both sides of Equation (7.28) by

A-1 gives

qi, = _iqi,_-I

I
I

I

I

I

or

qi,&-I = _i qi,

Then substituting Equation (7.29) into Equation (7.27),

(7.29)

one obtains

1 Iqi'BI

Vi(xSS) = _ In (llB,qill+ 1)

Since B,qi is a scalar, ll_'qill = l_'qil

Equation (7.30) becomes

(7.30)

= lqi'_Bland

1

I vi(xss)- _ in(2) (7.31)

I

I
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In this case it can be readily seen that Vl(xsS) is greater

than V2(xSS) , since I_I < I_21 . Again there must be some

state at which V 1 = V 2 and the system again reaches the R

subset.

To review the process, from an arbitrary initial

state in Region I-, the system is transferred to Region II,

then to III +, and finally it reaches R which is the boundary

separating III+ and I+. Since the initial point in Region

I- was arbitrary, for any initial state in Regions II and

III +, the argument is identical from that point on. Simi-

larly for initial states in Regions I+ and III-, the argu-

ments are essentially identical to those presented above.

Hence for any initial state the technique presented above

transfers the system to the subset R. Once in R the

control u = u I transfers the system directly to the origin,

since u I = u 2 and V 1 = V 2.

It is easy to verify that the method presented above

yields true time-optimal control. From an initial state,

the method transfers the system by means of a constant con-

trol vector to the subset R. The control is then switched

and the system is driven to the origin by means of another

constant control vector. In the true time-optimal perform-

ance, the system is driven from an initial state to the

switching line and then to the origin. But the switching

line and the R subset are identical. The control necessary

to transfer the system from any initial state to R is
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unique due to the scalar nature of the control. Therefore

the two methods must yield identical control in that portion

of the response. But the control necessary to drive the

system from the point on R to the origin is also unique, and

hence the two methods must again yield the same control.

The two methods are therefore identical for the entire

transition period. The method presented above yields true

time-optimal performance.

Before generalizing the above procedure to nth-

order systems in which r = n-l, it is convenient to add some

new notation. Let u2'n(x°,l) be the vector of unit magni-

tude such that V2(x°,P2) = V3(x°,p 3) = -.- = Vn(X°,P n)

where as usual Pi = u2'n(x°,l)'ui(x °,I). Then let the

common value of these r eigenvector scalar product solu-

tions be designated by V2,n(X°,l) = V2(x°,P2) = .-. =

Vn(x° 'Pn )"

One additional generalization is necessary. Since

the control is no longer scalar, the concept of equating

two controls needs to be generalized. The approach that is

taken is to consider the sign of the scalar product of two

control vectors. Therefore in the second-order case, one

should consider ulu2> 0 rather than u I = u 2 in order to be

completely consistent.

Again let the state space be divided into three

regions.

!
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Region I: ul(x,1)'u2'n(x,1)> 0 and Vl(X,p 1)

V2,n(X,1).

Region II: ul(x,1)'u2'n(x,1)< 0.

Region III: ul(x,l)'u2'n(x,1)> 0 and Vl(X,P1)

V2,n(X,1).

Regions I and III are further subdivided into positive and

negative regions, depending on whether ql'x is positive or

negative.

Now generalizing the control policy for second-order

systems presented above, one obtains:

1) If ul'u 2'n<0, use u = u 1.

2) If ul'u 2'n>0 and VI_V 2 use u = u 1
,n'

3) If ul'u2'n>0 and V l<V2,n, use u = -u 1.

4) If ul'u2'n>0 and V 1 = V2,n, use u = u2, n.

This policy is shown graphically in Figure 7.4. Again the

policy can be implemented on an analog computer to yield

continuous closed-loop, sub-optimal control. The sub-

optimal policy is based on two facts. First, the technique

reduces to true time-optimal control for second-order

systems as shown above. Second, the method works, i.e. it

transfers the system from an initial state to the R subset

and thence to the origin. This second fact can be proven by

an argument similar to that presented above for second-order

systems. Because of this similarity, the argument is not

repeated here. However, it is necessary to show that once

the system enters Region III, it is driven again into

I
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IS uI(x°, I )'

NO

USE

u2,n(x °, I)> 0 I

YES

IS vl(x°p1)=V2,n(X°,l)I

NO

l USE

YES

U=U2,n(X°l) I

fUSE u=-u'(x°,,)I fUSE u =Ui(x°,l) I

Figure 7.4 Sub-0ptimal Policy for

n-th Order Systems with r = n-1

I
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Region I and thus must cross the R subset which separates

Regions I and III.

In the case where _ = 0, it is easy to show by an

argument similar to that for second-order systems that V 1

becomes unbounded, while V 2 remains finite. Hence from,n

Region III the system is driven into Region I and therefore

reaches the R subset. Unfortunately in the case where Z 1 is

negative, it is not possible to show in general that the

system reaches the E subset, since it is impossible to

(x ss 1) Because the
obtain a general expression for V2, n , .

argument for %1 = 0 carries over so directly, it seems

reasonable to assume that the case for _ _ 0 is also true.

However, one should check this assumption for any particular

systems of interest.

As an illustration of the above technique, consider

the following thlrd-order system with two control variables.

Example 7.3

given by

The laws of motion for the system are

 131x o0I0u 1ul (7.32)

It is desired to drive the system from the initial state

(1.0,-1.0,-2.0) to the origin in approximately minimum time.

It can be easily verified that Vl(xsS,pl)_V2,n(xSS,1) and

hence the procedure described above can be applied.
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Figure 7.5 shows the time response of this system

when subjected to the above sub-optimal procedure. The

system begins in Region I- and the control is therefore

u = ul(x°,l) = (0,1). At approximately t = 0.9, the system

crosses into Region II and the control remains equal to

(0,1). The system enters Region III+ at approximately

t = 1.1, while the control remains constant. The R subset

is reached at t = 1.8 and the control is switched to

u2'n(x,1) = (-.285,-.959). The system reaches the origin

at t = 2.23.

Hence by the above sub-optimal procedure, the system

has been transferred from an initial state to the origin.

Although this example is presented from a specific initial

state, the policy can be implemented on an analog computer

to provide continuous closed-loop operation.

If r( n-l, then the method presented above cannot be

applied directly. In this case it is necessary for the

system to pass through a sequence of subsets with ever-

decreasing dimensionality, until the r-dimensional subset,

R, is reached. Each member of this sequence of subsets must

satisfy two requirements: 1) it must contain all of the

following subsets, and 2) it must be possible for the

system to remain in the subset under a constant control.

One possible sequence is Vn_ r = Vl+n.r,n, Vn_r_ 1 =

Vn_r,n, ".., V 1 = V2, n. Although this sequence does satisfy

the first requirement, it is easy to show, by example, that

I
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I
Figure 7.5 Time Response of a

Third-Order System with Two Control Variables
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it does not satisfy the second. It does not seem possible

to find a simple description for such a sequence in terms of

the eigenvector scalar products.

Therefore, although the method presented in this

section would appear to be the most promising in terms of a

satisfactory compromise between system complexity and speed

of response, its use at present is limited to systems in

which r = n-1.

In the next section the method of this section is

combined with the method of Section 7.2 to gain additional

flexibility.

7.5 Combination of Methods

Two methods of sub-optimal control have been

developed in this chapter for systems in which the control

matrix is singular.

The first method, presented in Section 7.2, is based

on the concept of equating r of the eigenvector scalar

product solutions. The system is therefore driven from an

arbitrary initial state to a state where r of the eigen-

vector scalar product solutions are zero. The control is

turned off at that point and the system is allowed to

approach the origin exponentially with a time constant equal

to 1/17_+11 . This sub-optimal method can be most advanta-

geously applied in cases where r or less of the eigenvalues

are small relative to the remaining eigenvalues. It was

I
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further noted that the approach presents a good compromise

between time- and fuel-optimal performance.

The second method, presented in Section 7.4, is

based on the concept of determining the r-dimensional subset

of the state space where all n of the eigenvector scalar

product solutions can be equated. Because this subset is

only r-dimensional, an arbitrary initial state is not in R

and hence it is necessary to transfer the system to R.

Unfortunately, it is only possible to determine a method for

doing this in the case where r = n-1. However, for systems

in which r = n-l, it is shown that the origin can be reached

in a finite time by the use of two different control vectors

with a change of control taking place upon reaching the R

subset. It is also shown that for second-order systems with

scalar control that this method yields true time-optimal

performance.

As noted above, each of the two methods has limita-

tions as well as advantages. However, the two methods can

be used in combination in order to eliminate some of these

limitations. As an illustration of the combination of these

methods, consider the following third-order system with

scalar control.
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.Example 7.4 The laws of motion for the system are

given by

X.'l -1 1 0 x I 0

x21 = -2 1 x2 +

x3J 0 -10 x 1

U

The eigenvalues are found to be -1,-2,-10. Neither of the

I
I

I

above methods can be applied separately to yield a satisfac-

tory answer. An application of the second method is

impossible since r _ n-1. On the other hand, the first

method cannot be employed successfully either, since the

system approaches the origin with a time-constant of 1/2

after the control is terminated. However, by combination of

these methods, a very satisfactory answer can be obtained.

The second method can be used to first drive the

system to a state where V I = V 2. Then applying the first

I method, the system is driven to a state where V 1 = V2 = 0,

I

I

I
I

I

I

thus eliminating the two longer time-constants. The system

therefore approaches the origin with a time-constant of

1/10.

This sub-optimal method was implemented on an analog

computer, and the time response for an initial state x ° =

(1.3,-0.75,0) is shown in Figure 7.6. The scalar functions,

Zl(X) = qi'x, are plotted rather than the state variables,

since they show more distinctly the point at which

V 1 = V 2 = O.
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Figure 7.6 Time Response of a

Third-Order System with Scalar Control
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reached and the

control switches from -1 to +1 and the system is driven

toward the state V 1 = V 2 = 0. This state is reached at

t = 1.84, and the control is turned off. Since the two slow

time constants have been eliminated during the controlled

portion, the system approaches the origin with only the time

constant 1/10 present.

This sub-optimal method has several advantages.

I
I
I

First, the response time is probably not too much longer

than the absolute minimum. It appears reasonable to assume

that the minimum time cannot be less than the time required

to force V 1 = V 2 = 0, 1.84 seconds. Second, the method

provides continuous, simple, closed-loop operation. These

I

I
I

I

aspects cannot be over-emphasized. The method also con-

serves fuel during the final coast period. Again an

effective compromise between speed of response and system

complexity has been reached.

Unfortunately, the S2-type surfaces cannot be used

to judge the quality of the sub-optimal control for either

of the methods presented in this chapter. In the case of

I

I
I

the Bang-Coast method, the response time is infinite, since

the origin is approached exponentially. The only possibil-

ity is to define some finite region about the origin and

find the time required to reach it. In this form it is

almost impossible to find the sub-optimal isochrones and

I

I



!

I
I

I

I

I

I

I
I

I
I

I

I
I

I

I
I

I

119

hence comparing them to the S 2 surfaces is difficult, if not

impossible.

In the case of the method of Section 7.4, the sub-

optimal isochrones are difficult to find except in the case

of second-order systems. Unfortunately, in this case, it is

also easy to find the true time-optimal isochrones which are

actually the same as the sub-optimal ones. However, the S 2

surfaces of Section 5.4 do not closely approximate the S o

surfaces, as can be easily seen from a simple example.

Because of this lack cf close approximation for second-order

systems, it does not appear that comparing the sub-optimal

and S 2 surfaces offers much assistance for higher order

systems.

The two methods presented in this chapter for the

control of systems with singular control matrices are by no

means a final solution to the problem. A great deal of

additional research is still needed, particularly with

respect to the method presented in Section 7.4. In the next

chapter, a procedure is developed for applying the methods

of this and the preceding chapter to some practical control

problems.

I
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CHAPTER 8

APPLICATIONS TO NUCLEAR ROCEET CONTROL PROBLEMS

8.1 Introduction

In this chapter, a procedure is outlined for applying

the closed-loop, approximately tlme-optimal control methods

of the two preceding chapters to some practical control

problems. In particular, attention is directed toward prob-

lems of nuclear rocket control. It should be emphasized

that the intent is to show ho____wthe methods can be applied to

typical problems rather than to actually apply them to prob-

lems of practical significance.

One encounters three obstacles in attempting to

apply the previously developed methods to practical control

problems:

1) The desired terminal state is not the origin.

2) The differential equations describing the system

are generally nonlinear.

3) The control vector is not constrained in the norm.

Since each of these three factors violates the basic assump-

tions of the sub-optimal control methods, it is necessary

that the problems be modified before these methods can be

applied. Appropriate modifications in order to overcome

each of these three factors are presented in the following

development.

120
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The difficulty of a terminal state, x(T), which is

not the origin may be overcome by making a transformation of

coordinates. If a new set of state variables, yl,Y2,...,yn,

is defined by the relation

I Yi = xi - xi(T)
i = 1,2,...,n

I then the terminal state is the origin in terms of the y

(8.1)

I

I

I

state variables. It should be noted that if the terminal

state is not an equilibrium state, then some transformation

of the control vector may also be necessary. (See Section

8.3.)

Having transformed the terminal state to the origin,

I
I

I

one may satisfy the requirement of a linear system by linear-

izing the system equations about the origin. In order to be

able to apply the sub-optimal methods to this linearized

version of the system, it is necessary that the eigenvalues

be real, distinct and non-positive, thereby limiting to some

I
extent the class of systems which can be treated. The effec-

tiveness of the sub-optimal control methods depends, to a

I
I

I

large measure, on the validity of this linearization proce-

dure. If, for example, most initial states lie within the

region for which the linearization is accurate, then good

performance can be expected. If, on the other hand, many

initial states are outside the region of validity, then

I

I

the quality of the performance may be in question. However,

due to the closed-loop nature of the system, as long as the

I
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linearization is even "reasonably" accurate, the system

should be rapidly driven toward the region of validity, and

hence the performance may still be good. Once again closed-

loop control is shown to be highly desirable.

The fact that in many cases the control vector is

not constrained in the norm is perhaps the most difficult

obstacle to overcome in applying the sub-optimal methods to

practical control problems. The method of attack is to find

an approximation to the given control region in the form of

a constraint on the norm of the control vector. In other

words, even though the control vector is not initially

constrained in the norm, a norm constraint is generated and

employed. In order to make this approximation most conven-

iently, consider a form of the generalized norm mentioned in

Section 2.3, IID_uti 2 _ 1. The problem is then to pick the

elements of D in order to generate the best approximation to

the given control region. Having chosen _, then if a new

set of control variables is defined by w = _Du, the control

region becomes llw li2 g 1, and the problem has been put in

proper form for the application of the sub-optimal control

methods.

As an illustration of this procedure, consider the

second-order control region defined by

lUll z_ 4 lu2i _L 1

I
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(See Figure 8.1.) In this case, D might be selected as
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in which case the approximate control region is II_Dull 2 _ I,

shown as the cross-hatched area in Figure 8.1.

To summarize, the procedure to be followed in pre-

I
I

I

paring a practical control problem for the application of

the previously developed sub-optlmal control methods is

1) Transform the desired terminal state to the origin.

2) Linearize the system about the origin.

3) Approximate the control region with a norm constraint.

I

I
I

In the following sections, the above procedure is illustrated

by application to two simple nuclear rocket control problems.

Once again it should be emphasized that the intent is to

show how to aoolv, not t__qaooIv, the procedure to practical

control problems.

I 8.2 Time-Optimal Control of Single-Precursor Grouj2
Neutron Kinetics

I

I
I

In this section, the above procedure is applied to

the time-optimal control of single-precursor group neutron

kinetics. The system is defined by the differential equa-

tions (See Mohler 1965, page 35.)

_ = -_n + _c + _nu

I 8 = _n - _c

I
(8.2)

I
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!
where n is the neutron density, c is the precursor concen-

tration, and u is the reactivity control. The problem is to

!

!

!

develop a closed-loop controller which transfers the system

from any initial state to a desired terminal state n(T) and

c(T) in approximately minimal time. The control region is

given by lul _ 0.5.

In order to treat the problem numerically, the

!

I
I

following parameters were used:

7_= 0.1 sec -1

= 6.0 x 10 -3

= 3 x 10 -5 sec

!
I

!
i
I

in which case the system equations (8.2) become

= -200n + 0.1c + 200nu

= 200n - 0.1c (8.3)

The terminal state was selected as

n(T) = 1.5

c(T) = 3 x 103

! Now applying the procedure outlined above, the first

step is to transform the desired terminal state to the origin,

I in which cale the system equations (8.3) become

I Y 1 = -200Yl + 0"1Y2 + 200(Yl + 1.5)u

i Y2 = 200y I - 0.1y 2

(8.4)

!
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where
Yl=n- 1.5

Y2 = c - 3 x 103

Linearizing the system, one obtains

2o0lo0 j:]yl30
2oo -o.lJ y

126

u (8.5)

The eigenvalues of the linearized system are 0, -200.1 and

therefore the requirement for real, distinct and non-

positive eigenvalues is satisfied.

Since the control is scalar, llull = lul , and the

control may be put into the correct form by making the sub-

stitution w = 2u, in which case the control region becomes

I Iwl = Ilwll -_ 1 (8.6)

1 and the system equations are

, Ir- 0o°°]:7iI= Yl + w

I Y2J L2oo -olj y

(8.7)

I Since r = n-l, either the Switched Control or the Bang-Coast

Method may be employed. In order to achieve finite settling

I

I

time, the Switched Control Method was selected, and the

closed-loop control system was implemented on a digital

computer. For an initial state

I

I
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n=l.0

c = 2.0 x 103
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I the optimal transition time is 4.084 seconds, while the sub-

I

I

I

1

optimal is 4.086, for a difference of less than 0.1%. It

cannot be over-emphasized that the sub-optlmal system is

closed-loop and correspondingly yields good results for any

initial state. Although this problem is perhaps the excep-

tion rather than the rule as concerns the closeness of

optimal and sub-optimal performance, the approach produces a

relatively simple, closed-loop system in a systematic manner.

I
!
I

8.3 Time-Optimal Control of a Simple Nuclear Rocket

Engine

As a second example of the procedure outlined in the

first section, consider the time-optimal control of a simple

nuclear rocket engine. The model (Mohler and Perry 1964)

I
I

I

for this problem consists of the basic neutron kinetic equa-

tions coupled with a heat exchange equation by means of core

temperature and propellant flow rate in the form of reac-

tivity. For convenience, only one group of delayed neutrons

is used. The system equations are

I Q - _T TQ- _Q+ _C + _QUl + Cp
Qu2

I _-_-_
Q

I _- Mc - Tau 2
(8.8)

I
I
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where the state variables are

Q = power level, megawatts

C = percursor concentration

T = core temperature, OR

and the control variables are

u I = control rod reactivity

u2 = coolant mass flow rate

Due to turbo-pump design constraints, such as stalling and

cavitation, both upper and lower bounds are placed on u2.

In addition, there is a constraint on the maximum and mini-

mum Control rod reactivity. Hence the control region

becomes

-K_Ul_K

ua _ u2 _ ub (8.9)

The problem is to obtain a closed-loop control system which

transfers the system from any initial state to the terminal

state, Qo' Co' and To, in approximately minimum time.

In order for the system to remain at the terminal

state, the flow must be equal to

Qo (8.I0)
U2o - McTo a

and hence it is necessary to transform not only the state

variables but also the control variables. If this desired

terminal state is transformed to the origin and the system

is linearized, the equations of motion become

I
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CpU2o

(cTTo + _ -_ )/2

1
m 0

M c

(CTQ o CpU2oQo )

_eTo /_
0

-aU2o

where

-aT
O

Yl = Q - Qo

Y2 = C - C o

Y3 = T - To

u' 2 = u 2 - U2o

The control region is then

-K_Zu I _LK

I _ L
I

ua U2o- u 2 u b - U2o

!

!

In order to treat the problem numerically, the following

hypothetical parameters were chosen
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Y2 +

Y3,
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CT = -2.4 x 10 -6 °R-1

Cp = 2.31 x 10 -3 °R-sec/lb

a = 5.22 x 10 -3 lb -1

= 6 x 10 -3

2 = 3 x 10 -5

M c = 1.2 megawatts

= 0.1 sec -1

K= 1.5

ua = 30

ub = 250

Qo = 2 x 103

C o = 4 x 106

T o = 2.5 x 103

U2o = 130

in which case the system equations become

_2

Y3

"-200 0.i -240"

2OO -0.I 0

0.833 0 -0.667

Yl

Y2

Y3

"4 x 105

+ 0

0
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3077-

0 Ul 1u t

-12.82

(S.13)

The eigenvalues for this linearized version of the system

are -0.0623, -1.612, and -199.09 and the requirement for

real, distinct and non-positive eigenvalues is satisfied.

This completes the first two steps in the procedure

of Section 8.1 and leaves only the approximation of the
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control region by means of a norm constraint.

control region has become

Since the

i31

one possible _ matrix is

D ..

It should be noted that, in this case, it is not possible to

reach the upper boundary of u 2 with the norm constraint due
l

to the unsymmetrical nature of the control region. (See

Figure 8.2.) Defining a new set of control variables

w = _Du, the system equations become

_2

--200

= 200

0.833

o.1 -240

-0.I 0

0 -0.667

7

Yl

Y2

Y3

+

x 105 3.077 x 105.

0

0 0

-1282

(8._)

and the control region is given by llwll _ 1.

Once again r = n-1 and either of the methods of

Chapter 7 can be used for the deslgn of the sub-optimal

controller, although the Switched Control Method is probably

more desirable. A straight-forward application of this

method yields a closed-loop sub-optimal system. The degree
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Figure 8.2 Approximation of the Control Region

by a Norm Constraint
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to which the performance of the sub-optimal system approxi-

mates the optimal is impossible to determine except by

determining the optimum response for specific trajectories.

8.4 Summary

In this chapter a procedure is outlined for applying

the sub-optimal methods of Chapters 6 and 7 to practical

control systems. This procedure is illustrated by its

application to two simple nuclear rocket control problems.

It is perhaps of value to summarize briefly the advantages

and disadvantages of the procedure.

Since a closed-loop system is obtained, any initial

state is transferred to the desired terminal state as long

as the linearization is reasonably accurate. The procedure

is systematic and relatively easy to employ. Since the

methods of Chapters 6 and 7 can only be used for time-

optimal control of linear systems with a control norm con-

straint, all problems must be forced into this rather

restrictive mold.

The success of this process for any particular prob-

lem depends on several factors and hence is difficult to

predict. In particular, the degree of validity of the

linearization and the closeness to which the admissible

control region can be approximated in Step Three are impor-

tant factors in determining the success or failure of the

method. The degree to which the sub-optimal performance

!
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approximates the true optimal is also unknown and hence one

must simply decide if the sub-optimal system is adequate for

any given problem.

The next chapter presents a summary of this report

and several suggestions for further research.



CHAPTER9

SUMMARYAND SUGGESTIONSFOR FUTURERESEARCH

9.1 Summary

In this work the Second Method of Liapunov is com-

bined with the minimum principle to develop a method of

closed-loop, approximately time-optimal control of linear

systems whose laws of motion are described by

=_Ax + Bu

The eigenvalues of A are real, distinct, and non-posltive.

The system is to be transferred from an arbitrary initial

x° to the origin. The control region, U, is the setstate,

of all control vectors, u, such that lJult _ 1. The first

step in this development is to show that solving the basic

optimization problem is eouivalent to solving a first-order

partial aifferential equation, the Hamilton-Jacobi equation.

Although it is not possible to solve this equation in

general, a special class of solutions is shown to exist.

These solutions, called eigenvector scalar products, form

the basis of an effective closed-loop, sub-optimal control

method.

In Chapter 6 the eigenvector scalar product solu-

tions are used for the control of systems in which the con-

B i_ non-singular. This method is based ontrol matrix, _, _

135
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the concept of finding a control vector of unit magnitude

such that the time required to reach each of the n surfaces

of V i = 0 is equal. Such a control vector can be found by

solving the n simultaneous algebraic equations Vl(X°,p 1) =

V2(x°,P2) = ''. = Vn(X°,pn) and llull= I where Pi =

u'ui(x°,l). This constant control vector transfers the

system to the origin in a finite time.

This method has several advantageous features.

First, in the absence of disturbances, the control vector,

once obtained, remains constant until the system reaches the

origin. Second, the transition time from any point to the

origin is finite and can be readily obtained. The sub-

optimal isochrones can also be easily found. Third, in

designing a closed-loop system using this method, the

controller-computer must only solve algebraic equations, and

hence the control can be computed continuously. This should

be contrasted with many of the present methods which require

on-line solution of two-point boundary value problems, and

hence discrete control.

Although obtaining the optimal isochrones is compu-

tationally impossible, by the use of the eigenvector scalar

product solutions, it is possible to find surfaces which

bound the optimal isochrones from the outside. These bounds

on the optimal isochrones enable one to show that the sub-

optimal and optimal isochrones are tangent at 2n points.

Because of the closeness of these surfaces at 2n points,

!
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it appears reasonable to conclude that the performance of

the sub-optimal system is an acceptable compromise between

system complexity and speed of response. The inability to

find bounding surfaces has been a serious difficulty in

designing approximately time-optimal systems in the past.

In Chapter 7 the restriction of a non-singular

control matrix is removed. The result is that it is no

longer possible to develop a single method to handle all

problems. Hence, two methods are developed, each of which

has special restrictions.

The first method, called the Bang-Coast Method, is

based on the concept of finding a control vector such that

the time required to reach r of the V i = 0 surfaces is equal

where r is the number of control variables. Such a control

transfers the system from any initial state to a state where

r of the eigenvector scalar product solutions are zero. At

this point the control is turned off and the system is

allowed to coast uncontrolled toward the origin. If the

magnitudes of r or less of the eigenvalues are small rela-

tive to the remaining eigenvalues, then by proper choice of

the eigenvector scalar product solutions the small eigen-

values can be effectively eliminated from the system during

the control-led interval. The system then approaches the

origin with only the relatively fast time constants present.

The second method, called the Switched Control

Method, is based on the concept of determining the

I
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r-dimensional subset of the state space where all n of the

eigenvector scalar product solutions can be equated.

Because this subset is only r-dimensional, an arbitrary

initial state is not in R and hence it is necessary to

transfer the system to R. Unfortunately, it is only pos-

sible to determine a method for doing this in the case where

r = n-1. However, for systems in which r = n-l, it is shown

that the origin can be reached in a finite time by the use

of two different control vectors with a change of control

taking place upon reaching the R subset. It is also shown

that for second-order systems with scalar control that this

method yields true time-optimal performance.

It is obvious that each of the two methods has limi-

tations as well as advantages. By combining the methods,

some of the limitations can be eliminated. In this manner

effective sub-optlmal control of systems with singular con-

trol matrices can be obtained. As before, both of these

methods can be implemented on an analog computer to achieve

continuous closed-loop operation; this fact is verified by

two examples.

These two methods, however, can by no means be

considered as a final solution to the problem. A great deal

of additional research is still needed, particularly with

respect to the Switched Control Method.

In Chapter 8, a procedure is outlined for applying

the sub-optimal control methods developed in Chapters 6 and

I
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7 to practical control problems. This procedure is illus-

trated by means of application to two simple nuclear rocket

problems.

In summary, there are three major contributions of

this work. First, a special class of solutions of the

Hamilton-Jacobi equation, called eigenvector scalar

products, are shown to exist.

Second, a method of Judging the quality of a sub-

optimal system by bounding the optimal isochrones is devel-

oped. The eigenvector scalar product solutions are used to

bound the optimal isochrones in an unusually simple manner.

Although this method of bounding the optimal isochrones

still needs much refinement, it is an important first step

and should allow at least a gross estimation of the quality

of sub-optimal systems.

Third, the eigenvector scalar product solutions are

used to develop several methods of sub-optimal control. The

procedure to be followed in each method is systematically

presented, and in each case the method is shown to represent

an effective compromise between system complexity and speed

of response.

The systematic procedures of this work should be

contrasted with the arbitrary selection of a V-function

required by the methods outlined in the Appendix. In addi-

tion, the methods presented in the Appendix use quadratic

forms for V-functions, and hence the "best" V-function

I
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depends on the initial state of the system. In the case of

the Kalman-Bertram method, chattering near the origin

degrades the performance considerably. Nahi's method, on

the other hand, requires that B be non-singular.

9.2 Suggestions for Future Research

Although the sub-optimal method presented in this

work offers an effective compromise between system complex-

ity and speed of response for many systems, there are sever-

al extensions of the method which would greatly increase the

number of systems to which it applies.

Although a method of treating nonlinear systems by

means of linearization about the terminal state was outlined,

it would be of significant practical value to be able to

extend the sub-optimal methods directly to nonlinear prob-

lems. The most encouraging area at present is bilinear

systems, in which the state and control variables are sepa-

rately linear but Jointly non-linear. Because of their

close relation to linear systems, it appears quite possible

that the method can be successfully applied to bilinear

systems. In regard to non-linear systems, the technique

of canonic transformation, presented briefly in Section 5.2,

may prove to be very valuable. Additional investigation of

this area would be highly desirable.

An extension of the method to cases where L(x) _ 1

would also greatly increase the practical importance of the

!
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method. Again a different method of modifying the Hamilton-

Jacobi equation may prove valuable. Of particular impor-

tance would be the case where L(x) = x'_Px and the problem

becomes the minimization of a quadratic performance index.

A method of refining the bounds on the optimal

isochrones as obtained in Section 5.4 would increase the

usefulness of these S2 surfaces. The importance of good S2

surfaces with regard to Judging the quality of a sub-optimal

system cannot be over-emphasized. Unless the optimal

isochrones can be obtained, in which case a sub-optimal

method is usually not needed, the S2 surfaces provide the

only approach to Judging sub-optimal systems.

Additional research is needed with regard to the

Switched Control Method of Chapter 7. In particular,

methods of reaching the R subset where r _ n-1 are needed.

If the method could even be extended to the case where

r = n-2, it would be of great practical significance.

With regard to applications to practical systems,

methods of treating control constraints other than a norm

constraint and methods of handling state space constraints

would be valuable. Removing the requirement of real eigen-

values should also be investigated in order to increase the

range of practical application.

By means of such extensions, it should be possible

to obtain closed-loop, sub-optimal methods of great practi-

cal significance.
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APPENDIX A

SUB-OPTIMAL CONTROL METHODS USING THE SECOND METHOD

A.1 Introduction

In this appendix, several methods of designing sub-

optimal control systems by the use of the Second Method of

Liapunov are presented. The methods presented here are not

intended to be an exhaustive compilation of such methods but

rather were chosen because of their relation to the material

in Chapter 4.

Each of the following three sections begins with a

brief discussion of the concepts or ideas underlying that

method. This is followed by a short presentation of the

method, which is then illustrated by a numerical example.

The sections conclude with a discussion of the advantages

and disadvantages of each method. For each of the methods

presented, the uncontrolled system is assumed to be at least

stable in the sense of Liapunov.

Unfortunately, all of these methods have three basic

problems: (1) they are approximate, (2) either no estimate

of the approximation error is possible, or the estimate is

overly conservative, and (3) it is necessary to choose a

V(x) for which no general procedure is presented. Hence

these methods have not been widely accepted.

142
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A.2 Estimation of Transient Behavior

One of the first uses of the Second Method as a

design tool was in the estimation of transient behavior

(Kalman and Bertram 1960, Letov 196i). In particular, it

was used to obtain an approximation of the settling time.

By making this approximation of the settling time as small

as possible, it was argued that the speed of response would

be increased. Johnson (i963) has recently employed such an

approach for the design of a class of sub-optimal control

systems.

Consider a positive definite scalar function, V(x),

whose total time derivative, V(x), is negative definite.

Then by the use of the Second Method, one may conclude

asymptotic stability of the origin. However, although one

knows that the motion tends toward the origin, the rate at

which the origin is approached is unknown. Now define _kas

_i__l_xl%= x V (A.I)

Then

v(x) _ -%v(x) (A.2)

which may be solved to give

V(x(t)) _ V(x(O))e -_t (A.3)

Thus, given the value of V(x) at t = 0, an upper bound on

the value of V(x(t)) at any time t> 0 can be obtained by the

I
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use of Equation (A.3). Therefore from the initial state x °,

the state of the system must be found within or on the sur-

face V(x) = V(x°)e -_tl after t I seconds. For an illustra-

tion of how this procedure can be used to estimate settling

time, consider the following example.

Example A.1 The equations of motion for the system

are

= (A.4)

x2] -2 -3 x

It is desired to find an upper bound on the time that it

takes the system to get from the initial condition x ° =

within the area defined by (Xl)2 + (x2)2 _- 0.01.(1,0) to

In this case it is necessary to find the largest

value of K such that the surface V(x) = K lies entirely

within or at most tangent to the surface (Xl)2 + (x2)2

0.01. See Figure A.1. Then by the use of Equation (A.3),

the settling time, ts, is

ts --_ln K- ( V(x---(-x_-) (A.5)

However, before this can be done, it is necessary to find _.

Let V(x) be defined by the quadratic form V(x) =

-x'_x where Q is a symmetric positive definite matrix. Then

V(x) is the quadratic form V(x) = x'_Px where P is a positive

definite symmetric matrix which is the unique solution of

the matrix equation.

!
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Figure A.1 Estimation of Settling Time
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(A.6)

Kalman and Bertram (1960) have shown that _ is given by

= minimum eigenvalue of Qp-1

Now let _ be

Then by the use of Equation (A.6), P is given by

and _ is equal 0.775.

For this V(x), K is found to be 7.64 x 10 -3 .

settling time as given by Equation (A.5) is

-1 In (7.64 x 10 -3 )
ts - 0.775 5

= 8.35 seconds

The

This method of estimating the transient behavior of

systems has several disadvantages. First, the method is

approximate and no knowledge of the quality of the approxi-

mation is known. Second, the value of rkand hence t
s

depends on the particular V(x) used. No method of picking

V(x) is known. Third, it is necessary that V(x) be
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negative definite. This is very difficult to attain in

practice except for linear systems.

la7

A.3 Kalman-Bertram Method

In 1960 Kalman and Bertram presented a method for

designing approximately time-optimal control systems. Their

method was based on the knowledge that for a closed, bounded

control region, U, the control vector is always on the

boundary. They suggested minimizing the time derivative of

V(x), arguing that this would make V(x) approach zero most

rapidly, and the state of the system should reach the origin

in minimum time.

Consider the system

= _Ax + Bu (A.7)

where the control region U is defined by the set of all con-

trol vectors u such that luil _- Mi, i = 1,2,''',n and Mi are

positive constants. Choose arbitrarily a positive semi-

definite matrix, _, and then find the positive definite

matrix, P, which is the unique solution of the matrix

equation

A'_+ P_AA= -R (A.8)

Now let V(x) be defined by V(x) = x'_Px and V(x,u) is

V(X,U) =-x'_x + 2u'B'_Px (A.9)
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In order to minimize V(x,u) with respect to all admissible

controls, it is necessary to minimize the second term in

V(x,u). To minimize this term, each component of u must

I

I

I

have its maximum magnitude in the direction opposite that of

the corresponding component of B'_x. Therefore

u i = -Misgn [¢B'_Px)i] (A. IO)

As an illustration of this procedure consider the following

I

I
I

I

exampl e.

Example A.2 The equations of motion of the system

are

Xl] x I Ul

It is desired to drive this system to the origin from any

I

I
I

initial state in minimum time.

The first step in the procedure is an arbitrary

choice of Q. In this case let Q be

:I
I in which case P as obtained from Equation (A.8) becomes

Then by the use of Equation (A.10) the control vector

components are found to be



I
I

I u I = -Mlsgn (2x I)

i u2 = -M2sgn (2x I + x 2)

I
This method has several advantages. First, it pro-
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vides a closed-loop solution of very simple form. The meth-

od is relatively easy to apply to high-order and multiple

input systems. The control matrix B is not required to be

non-singular.

The main disadvantage of the method is the lack of a

procedure for choosing the _ matrix and hence V(x). Since

the solution depends strongly on V(x), it would be highly

desirable to have a procedure for choosing the "best" V(x)

or at least an iterative method for improving on an initial

choice. Again the method provides only approximately

optimum performance and no procedure for evaluating the

quality of the approximation is presented. The resultin_

sub-optimal control system normally experiences chatterin_

near the origin, which degrades its performance.

One additional point should be mentioned with regard

to the choice of Quadratic forms. If V(x) is chosen to be a

quadratic form, then, in general, the "best" V(x) depends on

the initial state of the system. Hence one needs some form

of weighting of the state space with regard to possible

initial states before the "best" V(x) can be selected. Such

a weighting would be extremely difficult to realize in

practice.
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A.4 The Nahi Method

Nahi (1964) has recently presented a method of

designing sub-optimal control systems based on the concept

of forcing

min V(x,u) z_
u£U

150

-K1v{x_- 2K2 (A.II)

This method was based on two arguments. First, minimizing

V(x,u) would minimize the response time. Second, forcing

minimum V(x,u) to be less than or equal to -KIV(X) -

2K2 _would make the response time finite, as is shown

below.

The systems to be considered must be represented in

the following form

= _Ax + B_u (A.12)

where _ is a non-singular matrix and the control region U is

defined by the set of all control vectors u such that

IIull_ 1. Choose arbitrarily a positive definite matrix _,

and find the positive definite matrix, _, which is the

unique solution of the matrix equation

_'_ + P__AA= -_ (A.13)

Now let V(x) be defined by V(x) = x'_Px and then

V(x,u) is

v(x,u) = -x'9,x + 2u'B'2x (A.14)
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In order to minimize V(x,u) with respect to all admissible

controls, u must be given by

u -B'_ (A.15)
ilB'P..xJl

Then substituting Equation (A.15) for u into Equation (A.14)

gives

min V(x,u) = -x'_x - 2_x'PB'BPx'
u£U _

Nahi (1964) has shown that there exist

stants, K 1 and K2, defined by

K 1 = minimum eigenvalue of _-i

(K2)2 = minimum eigenvalue of PB___BB'

(A.16)

two positive con-

such that the following conditions are satisfied.

(A.17)

(A.18)

1. x'_x _ KlX'_Px

2. x'PBB'Px _ (K2)2x'_Px

(A.19)

(A.20)

I
(A.16) gives

Then substituting Equations (A.19) and (A.?0) in Equation

I min V(x,u) _- -KlX'Px - 2K 2 _x'Px"
u_U - -

| -_-_iv(x)- 2K24V_

I

(A.21)

Now for some given initial state x(0), Equation (A.21) can

be solved to obtain

I 2 K I _/V(x(t) ) _ V(X(0))_
+ 1)-_-t

I
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I If V(x(t)) is set equal to zero, then t become_ the transi-

tion time from x(0) to the origin, to .

I t _ 2 in (K_ __ + I) (A.22)

o K 1 2K 2

I Hence the transition tlme is not only known to be finite, .

I but also an upper bound on it is obtained. As an illustra

tion of the above procedure, consider the following example.

I Example A._ The equations of motion of the system

are

| _l F° _l x_l F_ -_/_l u_l
/=/ / /+/ / / (A.23)

| _2J L-2 -3jx_ L° _] u_

I It is desired to design a sub-optimal control system which

transfers the system from any initial state to the origin in

I a finite time. An upper bound on the transition time should

I also be obtained.

The first step in the procedure presented above is

I to arbitrarilY choose a _ matrix. For this problem let _ be

I
= L5 _oj

I in _hich case P as obtained from _quation (A.13) is

| - = Lm 2j

!
!
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Then the desired sub-optimal control as given by Equation

(A.15) is

u= 1

_4(Xl)2 + _1x2 + 13(x2)2/4 (2Xl + x 2, 3x2/2)

i From Equations (A.17) and (A.18) the constants K 1

and K 2 are found to be

I = 1.0K 1

K 2 = 1.224

!
Then by the use of Equation (A.22), the upper bound on the

I

I

transition time is

to _ 21n ( J r _,2_Xl 2 + 2XlX 2 + 2_x2j2t_

2.45
+i)

I
i

I

This method has two serious disadvantages. First,

the control matrix, B, must be non-singular. This, in

general, is not true in practice. If B is singular, then K 2

is zero, and the transltion time is infinite. Second, as

pointed out in the previous section, there is no procedure

I

I
I

for choosing the "best" _ matrix.

On the other hand, the method does provide a rela-

tively simple closed-loop solution. The transition time is

finite and an upper bound on it is readily obtained.

However, there is no means of Judging how close the transi-

tion time of the sub-optimal system is to the optimum.
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